联邦学习算法FedProx的PyTorch实现

I. 前言

FedProx的原理请见:MLSys 2020 | FedProx:异质网络的联邦优化

II. 数据集介绍

联邦学习中存在多个客户端,每个客户端都有自己的数据集,这个数据集他们是不愿意共享的。

数据集为某城市十个地区的风电功率,我们假设这10个地区的电力部门不愿意共享自己的数据,但是他们又想得到一个由所有数据统一训练得到的全局模型。

III. FedProx

算法伪代码:
在这里插入图片描述

1. 模型定义

客户端的模型为一个简单的四层神经网络模型:

# -*- coding:utf-8 -*-
"""
@Time: 2022/03/03 12:23
@Author: KI
@File: model.py
@Motto: Hungry And Humble
"""
from torch import nn


class ANN(nn.Module):
    def __init__(self, args, name):
        super(ANN, self).__init__()
        self.name = name
        self.len = 0
        self.loss = 0
        self.fc1 = nn.Linear(args.input_dim, 20)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        self.dropout = nn.Dropout()
        self.fc2 = nn.Linear(20, 20)
        self.fc3 = nn.Linear(20, 20)
        self.fc4 = nn.Linear(20, 1)

    def forward(self, data):
        x = self.fc1(data)
        x = self.sigmoid(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        x = self.fc3(x)
        x = self.sigmoid(x)
        x = self.fc4(x)
        x = self.sigmoid(x)

        return x

2. 服务器端

服务器端和FedAvg一致,即重复进行客户端采样、参数传达、参数聚合三个步骤:

# -*- coding:utf-8 -*-
"""
@Time: 2022/03/03 12:50
@Author: KI
@File: server.py
@Motto: Hungry And Humble
"""
import copy
import random

import numpy as np
import torch
from model import ANN
from client import train, test


class FedProx:
    def __init__(self, args):
        self.args = args
        self.nn = ANN(args=self.args, name='server').to(args.device)
        self.nns = []
        for i in range(self.args.K):
            temp = copy.deepcopy(self.nn)
            temp.name = self.args.clients[i]
            self.nns.append(temp)

    def server(self):
        for t in range(self.args.r):
            print('round', t + 1, ':')
            # sampling
            m = np.max([int(self.args.C * self.args.K), 1])
            index = random.sample(range(0, self.args.K), m)  # st
            # dispatch
            self.dispatch(index)
            # local updating
            self.client_update(index, t)
            # aggregation
            self.aggregation(index)

        return self.nn

    def aggregation(self, index):
        s = 0
        for j in index:
            # normal
            s += self.nns[j].len

        params = {}
        for k, v in self.nns[0].named_parameters():
            params[k] = torch.zeros_like(v.data)

        for j in index:
            for k, v in self.nns[j].named_parameters():
                params[k] += v.data * (self.nns[j].len / s)

        for k, v in self.nn.named_parameters():
            v.data = params[k].data.clone()

    def dispatch(self, index):
        for j in index:
            for old_params, new_params in zip(self.nns[j].parameters(), self.nn.parameters()):
                old_params.data = new_params.data.clone()

    def client_update(self, index, global_round):  # update nn
        for k in index:
            self.nns[k] = train(self.args, self.nns[k], self.nn, global_round)

    def global_test(self):
        model = self.nn
        model.eval()
        for client in self.args.clients:
            model.name = client
            test(self.args, model)

3. 客户端更新

FedProx中客户端需要优化的函数为:
h k ( w ; w t ) = F k ( w ) + μ 2 ∣ ∣ w − w t ∣ ∣ 2 h_k(w;w^t)=F_k(w)+\frac{\mu}{2}||w-w^t||^2 hk(w;wt)=Fk(w)+2μwwt2
作者在FedAvg损失函数的基础上,引入了一个proximal term,我们可以称之为近端项。引入近端项后,客户端在本地训练后得到的模型参数 w w w将不会与初始时的服务器参数 w t w^t wt偏离太多。

对应的代码为:

def train(args, model, server, global_round):
    model.train()
    Dtr, Dte = nn_seq_wind(model.name, args.B)
    model.len = len(Dtr)
    global_model = copy.deepcopy(server)
    if args.weight_decay != 0:
        lr = args.lr * pow(args.weight_decay, global_round)
    else:
        lr = args.lr
    if args.optimizer == 'adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=lr,
                                     weight_decay=args.weight_decay)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=lr,
                                    momentum=0.9, weight_decay=args.weight_decay)
    print('training...')
    loss_function = nn.MSELoss().to(args.device)
    loss = 0
    for epoch in range(args.E):
        for (seq, label) in Dtr:
            seq = seq.to(args.device)
            label = label.to(args.device)
            y_pred = model(seq)
            optimizer.zero_grad()
            # compute proximal_term
            proximal_term = 0.0
            for w, w_t in zip(model.parameters(), global_model.parameters()):
                proximal_term += (w - w_t).norm(2)

            loss = loss_function(y_pred, label) + (args.mu / 2) * proximal_term
            loss.backward()
            optimizer.step()

        print('epoch', epoch, ':', loss.item())

    return model

我们在原有MSE损失函数的基础上加上了一个近端项:

for w, w_t in zip(model.parameters(), global_model.parameters()):
    proximal_term += (w - w_t).norm(2)

然后再反向传播求梯度,然后优化器step更新参数。

原始论文中还提出了一个不精确解的概念:
在这里插入图片描述
所谓 γ \gamma γ inexact solution:对于一个待优化的目标函数 h ( w ; w 0 ) h(w;w_0) h(w;w0),如果有:
∣ ∣ ∇ h ( w ∗ ; w 0 ) ∣ ∣ ≤ γ ∣ ∣ ∇ h ( w 0 ; w 0 ) ∣ ∣ ||\nabla h(w^*;w_0)|| \leq \gamma ||\nabla h(w_0;w_0)|| h(w;w0)γh(w0;w0)
这里 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1],我们就说 w ∗ w^* w h h h的一个 γ − \gamma- γ不精确解。

不过值得注意的是,我并没有在原始论文的实验部分找到如何选择 γ \gamma γ的说明。查了一下资料后发现是涉及到了近端梯度下降的知识,本文代码并没有考虑不精确解,后期可能会补上。

IV. 完整代码及数据

后面将陆续公开~

  • 23
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 17
    评论
LM(Levenberg-Marquardt)算法是一种非线性最小二乘优化算法,用于解决非线性参数拟合问题。PyTorch是一个深度学习框架,主要用于神经网络的训练和推理。PyTorch本身没有直接实现LM算法,但可以使用PyTorch提供的优化器来实现类似的功能。 下面是一个使用PyTorch实现非线性参数拟合的示例代码,其中使用了LM算法的一个变种——LM-BFGS优化器: ```python import torch from scipy.optimize import curve_fit import matplotlib.pyplot as plt # 定义目标函数 def func(x, a, b, c): return a * torch.sin(b * x) + c # 生成模拟数据 x = torch.linspace(0, 2 * torch.pi, 100) y = func(x, 2.5, 1.3, 0.8) + 0.1 * torch.randn_like(x) # 定义损失函数 def loss_fn(params): a, b, c = params y_pred = func(x, a, b, c) loss = torch.mean((y_pred - y)**2) return loss # 使用scipy中的curve_fit函数进行参数拟合 params_init = torch.tensor([1.0, 1.0, 1.0], requires_grad=True) params_opt, _ = curve_fit(func, x.numpy(), y.numpy(), p0=params_init.detach().numpy()) params_opt = torch.tensor(params_opt) # 使用LM-BFGS优化器进行参数拟合 optimizer = torch.optim.LBFGS([params_init]) for _ in range(100): def closure(): optimizer.zero_grad() loss = loss_fn(params_init) loss.backward() return loss optimizer.step(closure) # 绘制拟合结果 plt.plot(x.numpy(), y.numpy(), 'r', label='Original') plt.plot(x.numpy(), func(x, *params_opt.numpy()), 'g--', label='Curve_fit') plt.plot(x.numpy(), func(x, *params_init.detach().numpy()), 'b--', label='LM-BFGS') plt.legend() plt.show() ``` 在上述代码中,首先定义了一个目标函数`func`,用于生成模拟数据。然后使用该目标函数生成一组带有噪声的模拟数据。 接下来,定义了损失函数`loss_fn`,用于计算模型的预测值与真实值之间的均方误差。然后,使用scipy中的`curve_fit`函数进行参数拟合,得到LM算法的拟合结果作为对照。 最后,使用PyTorch的`torch.optim.LBFGS`优化器进行LM-BFGS优化算法的参数拟合。通过多次迭代调用优化器的`step`方法,可以实现参数的更新和优化。 最后,使用matplotlib库将原始数据、curve_fit的拟合结果和LM-BFGS的拟合结果进行可视化展示。 需要注意的是,PyTorch主要用于深度学习任务,对于一般的非线性参数拟合问题,LM算法实现可能更适合使用scipy等专门的数值计算库。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值