今天,从头捋一捋功率谱和能量谱

本文涉及关于功率谱和能量谱的几乎所有相关知识,虽然各个部分看起来有点分散,但都是干货。

1. 能量信号与功率信号

如果把 f ( t ) f(t) f(t) 看做是电流关于的时间函数,单位为安培(A),那么 f ( t ) f(t) f(t) 作用在 1 Ω 1\Omega 的电阻上消耗的瞬时功率为 ∣ f ( t ) ∣ 2 |f(t)|^2 f(t)2 。如果站在上帝的角度来看,自盘古开天辟地 ( t = − ∞ t=-\infty t=) 到宇宙完全毁灭 ( t = ∞ t=\infty t=) 这个电阻消耗的总能量为:
E = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2   d t E=\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t E=f(t)2 dt
那么,这个电阻在宇宙的有生之年消耗的平均功率为:
P = lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 ∣ f ( t ) ∣ 2   d t P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^{2} \mathrm{~d} t P=TlimT12T2Tf(t)2 dt
上帝指示:

  • 如果 E E E 是一个非无穷大也非0的常数,那么 f ( t ) f(t) f(t) 就定义为能量有限信号,简称能量信号。显然,能量信号的平均功率 P P P 为0;
  • 如果 P P P 是一个非无穷大也非0的常数,比如 f ( t ) f(t) f(t) 为周期信号或者统计量满足某一分布的随机信号时,那么 f ( t ) f(t) f(t) 就定义为功率有限信号,简称功率信号。显然,功率信号的能量 E E E 为无穷大。

显然,能量信号在无穷远处一定是收敛的;显然,功率信号肯定比能量信号有着更大的能量。

2. 相关函数

相关函数是鉴别信号的有力工具,被广泛应用于雷达回波的识别,通信同步信号的识别等领域。相关函数也称为相关积分,它与卷积的运算方法非常类似。

2.1 能量信号的相关函数

对于实函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) ,如果他们是能量信号的话,他们之间的互相关函数定义如下:
R 12 ( τ ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t = ∫ − ∞ ∞ f 1 ( t + τ ) f 2 ( t ) d t R_{12}(\tau)=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t-\tau) d t=\int_{-\infty}^{\infty} f_{1}(t+\tau) f_{2}(t) d t R12(τ)=f1(t)f2(tτ)dt=f1(t+τ)f2(t)dt
注意,下脚的标号在前面的信号领先 τ \tau τ . 所以也可以说 f 2 ( t ) f_2(t) f2(t) f 1 ( t ) f_1(t) f1(t) 的互相关函数定义为:
R 21 ( τ ) = ∫ − ∞ ∞ f 1 ( t − τ ) f 2 ( t ) d t = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t + τ ) d t R_{21}(\tau)=\int_{-\infty}^{\infty} f_{1}(t-\tau) f_{2}(t) d t=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t+\tau) d t R21(τ)=f1(tτ)f2(t)dt=f1(t)f2(t+τ)dt
一般情况下, R 12 ( τ ) ≠ R 21 ( τ ) R_{12}(\tau) \neq R_{21}(\tau) R12(τ)=R21(τ) ,因为下脚的标号在前面的信号领先 τ \tau τ , 所以也可以理解为下脚的标号在后面的信号领先 − τ -\tau τ ,即: R 12 ( τ ) = R 21 ( − τ ) , R 21 ( τ ) = R 12 ( − τ ) R_{12}(\tau)=R_{21}(-\tau),\quad R_{21}(\tau)=R_{12}(-\tau) R12(τ)=R21(τ),R21(τ)=R12(τ)

假如说 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 是同一信号,都记为 f ( t ) f(t) f(t) ,这时就不需要对 R 12 ( τ ) R_{12}(\tau) R12(τ) R 21 ( τ ) R_{21}(\tau) R21(τ) 进行区分,此时的相关函数称为自相关函数,即:
R ( τ ) = ∫ − ∞ ∞ f ( t ) f ( t − τ ) d t = ∫ − ∞ ∞ f ( t + τ ) f ( t ) d t R(\tau)=\int_{-\infty}^{\infty} f(t) f(t-\tau) d t=\int_{-\infty}^{\infty} f(t+\tau) f(t) d t R(τ)=f(t)f(tτ)dt=f(t+τ)f(t)dt
容易看出,对自相关函数有: R ( τ ) = R ( − τ ) R(\tau)=R(-\tau) R(τ)=R(τ) ,可见, f ( t ) f(t) f(t) 的自相关函数 R ( τ ) R(\tau) R(τ) 是时移 τ \tau τ 的偶函数。

2.2 功率信号的相关函数

对于实函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) ,如果他们是功率信号的话,他们之间的互相关函数定义如下:
{ R 12 ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f 1 ( t ) f 2 ( t − τ ) d t ] R 21 ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f 1 ( t − τ ) f 2 ( t ) d t ] \left\{\begin{array}{l} R_{12}(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{1}(t) f_{2}(t-\tau) \mathrm{d} t\right] \\ R_{21}(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{1}(t-\tau) f_{2}(t) \mathrm{d} t\right] \end{array}\right. R12(τ)=limT[T12T2Tf1(t)f2(tτ)dt]R21(τ)=limT[T12T2Tf1(tτ)f2(t)dt]

自相关函数
R ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] R(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f(t-\tau) \mathrm{d} t\right] R(τ)=Tlim[T12T2Tf(t)f(tτ)dt]

3. 相关与卷积的关系

下面以能量信号为例,梳理一下卷积与相关的联系:

两个函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 的卷积定义式为:
f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau f1(t)f2(t)=f1(τ)f2(tτ)dτ
而他们的互相关函数定义为:
R 12 ( τ ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t R_{12}(\tau)=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t-\tau) d t R12(τ)=f1(t)f2(tτ)dt
将他们的自变量统一下,则有:
{ f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ ) d τ    R 12 ( t ) = ∫ − ∞ ∞ f 1 ( τ ) f 2 ( τ − t ) d τ \begin{aligned} \left\{\begin{array}{l} f_{1}(t) * f_{2}(t)&=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\ \qquad \:\:R_{12}(t)&=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(\tau-t) d \tau \end{array}\right. \end{aligned} {f1(t)f2(t)R12(t)=f1(τ)f2(tτ)dτ=f1(τ)f2(τt)dτ
所以他们之间的关系就显而易见了:
R 12 ( t ) = f 1 ( t ) ∗ f 2 ( − t ) R_{12}(t)=f_{1}(t) * f_{2}(-t) R12(t)=f1(t)f2(t)
由上式可知,若 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 均为实偶函数,则卷积与相关的形式完全相同。

4. 帕塞瓦尔定理

由本文第一部分知 f ( t ) f(t) f(t) 能量为:
E = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2   d t E=\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t E=f(t)2 dt
帕塞瓦尔定理指的是时域和频域内能量是守恒的,若 f ( t ) f(t) f(t) 的傅里叶变换为 F ( j ω ) F(j\omega) F() ,则该定理可以用公式表示为:
E = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2   d t = 1 2 π ∫ − ∞ ∞ ∣ F ( j ω ) ∣ 2   d ω E=\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(j \omega)|^{2} \mathrm{~d} \omega E=f(t)2 dt=2π1F()2 dω
证明如下:

因为 f ( t ) f(t) f(t) 的傅里叶变换 F ( j ω ) F(j\omega) F() 为:
F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t   d t F(j\omega)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-j \omega t} \mathrm{~d} t F()=f(t)et dt
F ( j ω ) F(j\omega) F() 的共轭为 F ∗ ( j ω ) F^*(j\omega) F() ,假设 f ( t ) f(t) f(t) 为复信号(这样假设适用性更广,也适用于实信号),则:
F ∗ ( j ω ) = ∫ − ∞ ∞ f ∗ ( t ) e j ω t   d t F^*(j\omega)=\int_{-\infty}^{\infty} f^*(t) \mathrm{e}^{j \omega t} \mathrm{~d} t F()=f(t)et dt
所以
∫ − ∞ ∞ ∣ F ( j ω ) ∣ 2   d ω = ∫ − ∞ ∞ F ( j ω ) F ∗ ( j ω )   d ω = ∫ − ∞ ∞ F ( j ω ) ∫ − ∞ ∞ f ∗ ( t ) e j ω t   d t   d ω = ∫ − ∞ ∞ f ∗ ( t ) ∫ − ∞ ∞ F ( j ω ) e j ω t   d ω   d t = ∫ − ∞ ∞ f ∗ ( t ) ⋅ 2 π f ( t )   d t = 2 π ∫ − ∞ ∞ ∣ f ( t ) ∣ 2   d t \begin{aligned} \int_{-\infty}^{\infty}|F(j \omega)|^{2} \mathrm{~d} \omega &= \int_{-\infty}^{\infty}F(j \omega)F^*(j \omega) \mathrm{~d} \omega\\ &= \int_{-\infty}^{\infty}F(j \omega) \mathrm \int_{-\infty}^{\infty} f^*(t) \mathrm{e}^{j \omega t} \mathrm{~d} t {~d} \omega\\ &= \int_{-\infty}^{\infty} f^*(t) \mathrm \int_{-\infty}^{\infty} F(j \omega) \mathrm{e}^{j \omega t} \mathrm{~d}\omega {~d} t \\ &= \int_{-\infty}^{\infty} f^*(t) \cdot 2\pi f(t) \mathrm {~d} t \\ &= 2\pi\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t \end{aligned} F()2 dω=F()F() dω=F()f(t)et dt dω=f(t)F()et dω dt=f(t)2πf(t) dt=2πf(t)2 dt
所以有:
E = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2   d t = 1 2 π ∫ − ∞ ∞ ∣ F ( j ω ) ∣ 2   d ω E=\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(j \omega)|^{2} \mathrm{~d} \omega E=f(t)2 dt=2π1F()2 dω
证毕.

5. 能量谱

对于能量信号,为了表征能量在频域中的分布情况,可以借助密度函数的概念,类比概率密度函数,我们可以使用能量密度函数 E ( ω ) E(\omega) E(ω), 将其定义为单位频率内的信号能量。能量密度函数简称为能量频谱能量谱.

如何得到 f ( t ) f(t) f(t) 的能量谱 E ( ω ) E(\omega) E(ω) 的表达式呢?

因为单位频率内的信号能量为 E ( ω ) E(\omega) E(ω) ,所以在频带   d f \mathrm{~d} f  df 内信号的能量是 E ( ω )   d f E(\omega)\mathrm{~d} f E(ω) df, 那么信号在整个频率区间 ( − ∞ , ∞ ) (-\infty,\infty) (,) 内的总能量还可以这么求:
E = ∫ − ∞ ∞ E ( ω )   d f = 1 2 π ∫ − ∞ ∞ E ( ω )   d ω E=\int_{-\infty}^{\infty}E(\omega) \mathrm{~d} f=\frac{1}{2\pi}\int_{-\infty}^{\infty}E(\omega) \mathrm{~d} \omega E=E(ω) df=2π1E(ω) dω
将上式与帕塞瓦尔定理进行对比,则可以得到能量谱表达式为:
E ( ω ) = ∣ F ( j ω ) ∣ 2 E(\omega)=|F(j \omega)|^{2} E(ω)=F()2

6. 能量信号的自相关函数与能量谱是一对傅里叶变换

因为能量信号的自相关函数为:
R 12 ( τ ) = f 1 ( τ ) ∗ f 2 ( − τ ) R_{12}(\tau)=f_{1}(\tau) * f_{2}(-\tau) R12(τ)=f1(τ)f2(τ)
时域卷积对应频域相乘 可得到互相关函数的傅里叶变换为:
F [ R 12 ( τ ) ] = F [ f 1 ( τ ) ∗ f 2 ( − τ ) ] = F [ f 1 ( τ ) ] F [ f 2 ( − τ ) ] = F 1 ( j ω ) F 2 ( − j ω ) = F 1 ( j ω ) F 2 ∗ ( j ω ) \begin{aligned} \mathrm{F}\left[R_{12}(\tau)\right] &=\mathrm{F}\left[f_{1}(\tau)^{*} f_{2}(-\tau)\right]\\ &=\mathrm{F}\left[f_{1}(\tau)\right] \mathrm{F} \left[f_{2}(-\tau)\right] \\ &=F_{1}(j \omega) F_{2}(-j \omega)\\ &=F_{1}(j \omega) F_{2}^{*}(j \omega) \end{aligned} F[R12(τ)]=F[f1(τ)f2(τ)]=F[f1(τ)]F[f2(τ)]=F1()F2()=F1()F2()
所以自相关函数的傅里叶变换为:
F [ R ( τ ) ] = F ( j ω ) F ∗ ( j ω ) = ∣ F ( j ω ) ∣ 2 = E ( ω ) \mathrm{F}\left[R(\tau)\right]=F(j \omega) F^{*}(j \omega)=|F(j \omega)|^{2}=E(\omega) F[R(τ)]=F()F()=F()2=E(ω)
所以说,能量信号的自相关函数与能量谱是一对傅里叶变换。

7. 功率谱

周期信号在时间上无始无终,能量必然是无限的,但功率可能是有限的;随机信号,能量也是无限的,且无法用确定的时间函数来表示,所以不存在频谱,这种情况下一般用功率谱来描述其频率特性。暂且把这当做为什么会存在功率谱的一种解释吧。

对于功率信号 f ( t ) f(t) f(t) ,因为其能量是无穷大的,我们一般关注的是其平均功率 P P P,它的定义是:
P = def ⁡ lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 ∣ f ( t ) ∣ 2   d t P \stackrel{\operatorname{def}}{=} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^{2} \mathrm{~d} t P=defTlimT12T2Tf(t)2 dt
如果 f ( t ) f(t) f(t) 是实函数,则其平均功率定义为:
P = def ⁡ lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 f 2 ( t ) d t P \stackrel{\operatorname{def}}{=} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^{2}(t) \mathrm{d} t P=defTlimT12T2Tf2(t)dt
求功率谱的推导过程如下:

由于功率信号的能量是无穷的,且信号的持续时间是无限的,而计算功率又必须用到持续时间的信息带入上述公式,所以计算功率谱时会将信号进行截断然后取极限来完成,如下图,从 $ f(t)$ 中截取 ∣ t ∣ ≤ T / 2 |t| \leq T / 2 tT/2 的一段, 得到一个截尾函数 f T ( t ) f_{T}(t) fT(t)

image-20221028183250298

f T ( t ) f_{T}(t) fT(t) 可以表示为:
f T ( t ) = f ( t ) [ ε ( t + T 2 ) − ε ( t − T 2 ) ] f_{T}(t)=f(t)\left[\varepsilon\left(t+\frac{T}{2}\right)-\varepsilon\left(t-\frac{T}{2}\right)\right] fT(t)=f(t)[ε(t+2T)ε(t2T)]
如果 T T T 是有限值,则 f T ( t ) f_{T}(t) fT(t) 的能量也是有限的。令:

F T ( j ω ) = F [ f T ( t ) ] F_{T}(j \omega)=\mathrm{F}\left[f_{T}(t)\right] FT()=F[fT(t)]
由帕斯瓦尔定理, f T ( t ) f_{T}(t) fT(t) 的能量 E T E_{T} ET 可表示为:
E T = ∫ − ∞ ∞ f T 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ ∣ F T ( j ω ) ∣ 2 d ω E_{T}=\int_{-\infty}^{\infty} f_{T}^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|F_{T}(j \omega)\right|^{2} d \omega ET=fT2(t)dt=2π1FT()2dω

由于 ∫ − ∞ ∞ f T 2 ( t ) d t = ∫ − T 2 T 2 f 2 ( t ) d t \int_{-\infty}^{\infty} f_{T}^{2}(t) d t=\int_{-\frac{T}{2}}^{\frac{T}{2}} f^{2}(t) d t fT2(t)dt=2T2Tf2(t)dt ,所以 f ( t ) f(t) f(t) 的平均功率为:
P = def ⁡ lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 f 2 ( t ) d t = lim ⁡ T → ∞ 1 T ∫ − ∞ ∞ f T 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ lim ⁡ T → ∞ 1 T ∣ F T ( j ω ) ∣ 2 d ω \begin{aligned} P &\stackrel{\operatorname{def}}{=} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^{2}(t) \mathrm{d} t\\ &=\lim _{T \rightarrow \infty} \frac{1}{T}\int_{-\infty}^{\infty} f_{T}^{2}(t) d t\\ &=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\lim _{T \rightarrow \infty} \frac{1}{T}\left|F_{T}(j \omega)\right|^{2} d \omega \end{aligned} P=defTlimT12T2Tf2(t)dt=TlimT1fT2(t)dt=2π1TlimT1FT()2dω
类比能量密度函数的定义,定义 P ( ω ) P(\omega) P(ω) 为功率密度函数,即单位频率内的信号功率,简称功率谱,那么信号在整个频率区间 ( − ∞ , ∞ ) (-\infty,\infty) (,) 内的功率还可以这么求:
P = ∫ − ∞ ∞ P ( ω ) d f = 1 2 π ∫ − ∞ ∞ P ( ω ) d ω P=\int_{-\infty}^{\infty} \mathrm{P}(\omega) \mathrm{d} f=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{P}(\omega) \mathrm{d} \omega P=P(ω)df=2π1P(ω)dω
比较得到:
P ( ω ) = lim ⁡ T → ∞ ∣ F T ( j ω ) ∣ 2 T \mathrm{P}(\omega)=\lim _{T \rightarrow \infty} \frac{\left|F_{T}(j \omega)\right|^{2}}{T} P(ω)=TlimTFT()2

8. 功率信号的自相关函数与功率谱是一对傅里叶变换

因为功率信号的自相关函数为(本文前面已经介绍):
R ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] R(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f(t-\tau) \mathrm{d} t\right] R(τ)=Tlim[T12T2Tf(t)f(tτ)dt]
对两边同时取傅里叶变换,有:
F [ R ( τ ) ] = F [ lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] = F [ lim ⁡ T → ∞ 1 T ∫ − ∞ ∞ f T ( t ) f T ( t − τ ) d t ] = F { lim ⁡ T → ∞ 1 T [ f T ( τ ) ∗ f T ( − τ ) ] } = lim ⁡ T → ∞ 1 T ∣ F T ( j ω ) ∣ 2 = P ( ω ) \begin{aligned} \mathrm{F}[R(\tau)] &=\mathrm{F} \quad\left[\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f(t-\tau) \mathrm{d} t\right] \\ &=\mathrm{F} \quad\left[\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty} f_{T}(t) f_{T}(t-\tau) \mathrm{d} t\right] \\ &=\mathrm{F} \quad\left\{\lim _{T \rightarrow \infty} \frac{1}{T}\left[f_{T}(\tau)^{*} f_{T}(-\tau)\right]\right\} \\ &=\lim _{T \rightarrow \infty} \frac{1}{T}\left|F_{T}(j \omega)\right|^{2} \\ &=\mathrm{P}(\omega) \end{aligned} F[R(τ)]=F[TlimT12T2Tf(t)f(tτ)dt]=F[TlimT1fT(t)fT(tτ)dt]=F{TlimT1[fT(τ)fT(τ)]}=TlimT1FT()2=P(ω)

所以说: 功率信号的自相关函数与功率谱是一对傅里叶变换.

本文首发于微信公众号振动信号研究所

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值