不同版本的CUDA切换,详细步骤:

最近遇到做大模型的项目,需要特定的cuda版本,但是电脑上之前已经安装了其他版本的CUDA,为了不影响之前的环境,考虑安装一个并行的CUDA,在实际操作时,根据需要进行链接使用,于是开始下面的步骤:

1、安装其他版本的CUDA ,这里我需要的版本是11.6:

知乎 - 安全中心从官网下载得到runfile版本。

2、进入下载路径,安装runfile

sudo sh cuda_11.6.0_510.39.01_linux.run

3、点击continue,accept;

4、不安装驱动

5、不安装软链接。安装完成后会提示没有加入环境导致不成功,没有关系,之后会通过软链接完成配置

6、安装cudnn

参考链接:https://zhuanlan.zhihu.com/p/583545639?utm_id=0

7、配置环境变量:

打开.bashrc文件并修改环境变量,若安装其他版本CUDA时候设置过PATH, 将其注释掉。

sudo gedit ~/.bashrc

#在bashrc末尾添加(如下图)
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

8、利用软链接切换CUDA版本

cd /usr/local
stat cuda
sudo rm -rf cuda 
sudo ln -s /usr/local/cuda-11.6 /usr/local/cuda

## 切换CUDA版本后,需要重启电脑

9、重启后,可以看见CUDA, cuDNN已成功切换

<think>好的,用户想在Windows上管理并切换不同版本CUDA。我需要整理之前的引用内容,给出一个清晰的步骤指南。首先,用户可能已经安装了多个CUDA版本,但不知道如何切换。根据引用[1][2][3],关键是通过环境变量调整,尤其是CUDA_PATH和系统路径中的顺序。 第一步应该是检查当前CUDA版本,使用nvcc --version命令。然后,定位到CUDA_PATH变量,修改其指向目标版本。接着,调整系统PATH中相关路径的顺序,确保目标版本的路径在顶部。最后,验证是否切换成功。需要提醒用户注意,不同项目可能需要不同CUDA版本,比如PyTorch或TensorFlow可能依赖特定版本,引用[4]提到CUDA_HOME会影响运行时版本。 可能的问题包括环境变量设置错误或路径顺序未正确调整,导致系统找不到正确的CUDA。需要强调每一步操作后的验证步骤,比如重启命令行工具以确保环境变量生效。此外,用户可能需要安装多个版本CUDA工具包,每个版本放在不同目录下,如引用[3]中的示例。还要提到应用场景,如兼容性测试、硬件优化和团队协作,帮助用户理解为何需要切换。最后,生成相关问题,帮助用户深入探索,比如版本冲突或项目配置问题。</think>### 分步指南:Windows系统多版本CUDA管理及切换 在Windows系统中实现多版本CUDA共存与切换的核心是**环境变量调整**,具体步骤如下: --- #### **步骤1:安装多个CUDA版本** - 从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)下载所需CUDA版本安装包,安装时选择**自定义安装**,避免覆盖现有版本。 - 每个CUDA版本需安装到**独立目录**,例如: - CUDA 11.1: `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1` - CUDA 10.2: `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2` 确保不同版本的`bin`、`lib`等子目录互不干扰[^3][^2]。 --- #### **步骤2:修改系统环境变量** 1. **调整`CUDA_PATH`变量** - 打开系统环境变量设置(按`Win + S`搜索“环境变量” → 选择“编辑系统环境变量” → 高级 → 环境变量)。 - 找到`CUDA_PATH`,将其值修改为目标版本的根目录,例如: ``` CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 ``` - 若不存在`CUDA_PATH`,需手动新建该变量[^1][^3]。 2. **调整`PATH`变量** - 在系统变量中找到`Path`,将**目标CUDA版本的`bin`和`libnvvp`目录路径**移动到列表顶部,确保系统优先加载新版本。例如: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\libnvvp ``` - 旧版本路径可保留但需下移,避免冲突[^1][^3]。 --- #### **步骤3:验证切换结果** 1. 打开新的命令提示符(**需重启CMD或PowerShell以加载新环境变量**)。 2. 执行以下命令: ```bash nvcc --version ``` 输出应显示目标CUDA版本号,例如: ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2020 NVIDIA Corporation Built on Mon_Oct_12_20:54:10_Pacific_Daylight_Time_2020 Cuda compilation tools, release 11.1, V11.1.105 ``` 若版本号不符,需检查`PATH`顺序和`CUDA_PATH`值。 --- #### **步骤4:框架适配(如PyTorch/TensorFlow)** - 深度学习框架(如PyTorch)默认使用`CUDA_PATH`指定的版本。若需强制使用特定版本,可临时设置环境变量: ```bash set CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 ``` 或在代码中指定CUDA路径[^4]。 --- ### **注意事项** 1. **驱动兼容性**:CUDA版本需与NVIDIA显卡驱动兼容,高版本驱动通常支持旧版CUDA。 2. **项目隔离**:建议为不同项目创建虚拟环境(如conda),并在环境中单独配置CUDA依赖。 3. **系统权限**:修改系统环境变量可能需要管理员权限。 --- ### **应用场景** - **多项目协作**:同时处理依赖CUDA 10.2的TensorFlow 2.4和CUDA 11.x的PyTorch 1.8项目。 - **性能调优**:为RTX 30系GPU选择CUDA 11.1以上版本以支持新特性(如AMP混合精度训练)[^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值