使用FastAPI整合Gradio和Django

经常接触机器学习的同学可能都接触过Gradio这个框架,Gradio是一个基于Python的专门为机器学习项目创建的快速开发框架,可以让开发者快速发布自己的模型给用户测试,目前Huggingface上的机器学习项目都是基于Gradio对外提供服务的。

不过Gradio的目标是机器学习模型的快速演示,真正为用户提供服务时,我们还有很多需要关注的方面,比如用户的鉴权授权、消息通知、静态页面、SEO优化等等,这些使用Gradio有点捉襟见肘,我们还需要使用更加成熟的Web开发框架,比如Django这种。

但是我们初期可能已经用Gradio做了很多的功能,不想重写这些东西,这时候就产生了集成Gradio到其它框架的需求。这篇文章就来分享如何将Gradio集成到成熟的Web框架Django,以方便后来者。

创建Django项目

这里假设我们已经有了一个Gradio的项目,将在这个项目中继续创建一个Django项目。

创建 Django 项目

首先通过 pip 安装 Django

pip install django

然后在程序的根目录初始化Django项目的一些基础文件:

django-admin startproject myproject
cd myproject

这里的 myproject 需要替换成你的 Django 项目名。

然后我们还要继续创建 Django 应用,应用可以理解为模块,比如项目下有管理模块、用户模块、支付模块和具体的业务单元模块。每个应用都有自己的模型、视图、模板和 URL 路由。

python manage.py startapp myapp

请将myapp改为你的应用名称。

执行完这些命令之后,项目中将会增加一些Django的框架脚本。

创建 Django 页面

有了Django的基础脚本,然后就可以开发Web页面了。

1个页面涉及三个方面:视图、路由和HTML模板,还是以 myapp 为例:

在 myapp/views.py 中创建一个视图:

from django.shortcuts import render

def index(request):
    return render(request, 'index.html')

在 myapp/urls.py 中设置 URL 路由到这个视图:

from django.urls import path
from .views import index

urlpatterns = [
    path('', index, name='index'),
]

在 myapp/templates/index.html 创建 HTML 模板:

<!DOCTYPE html>
<html>
<head>
    <title>Gradio in Django</title>
</head>
<body>
    <h1>Welcome to My App</h1>
</body>
</html>

然后我们就可以启动程序,在浏览器访问这个页面了:

uvicorn myproject.wsgi:application --reload

启动程序使用的是 uvicorn工具,myproject是项目的名称,wsgi对应到myproject文件夹下的 wsgi.py。

集成Gradio到Django

准备一个Gradio项目

为了演示,这里准备一个Gradio的程序。

假设文件路径为:gradio/app.py

import gradio as gr

def greet(name):
    return f"Hello {name}!"

# 定义 Gradio 接口
demo = gr.Interface(fn=greet, inputs="text", outputs="text")

整合 Gradio 和 Django

现在我们把 Gradio 集成到 Django 中,它们将在同一个进程中运行,对外使用一个端口号。Django 默认通过根目录 / 进行访问,Gradio则通过 /gradio 进行访问。

这里走过一些弯路,有问题的方法就不讲了,直接给出我的方案。

这里还要引入一个框架 FastAPI,我们将使用 FastAPI 来代理对 Gradio 和 Django 的访问,所以其实不是将Gradio集成到Django,这个方法本质上是将 Gradio 和 Django 整合到一起。

打开 myproject/wsgi.py,这是 Django 项目的主文件:

import os
from django.core.wsgi import get_wsgi_application
from fastapi import Request, Response
from starlette.middleware.wsgi import WSGIMiddleware
import gradio as gr
from gradio.app import demo

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myproject.settings')

# 创建 FastAPI 应用
app = FastAPI()

# 挂载 Gradio 到FastAPI,注意这个path要和下边中间件中的一致
app = gr.mount_gradio_app(app, demo, path="/gradio")

# 获取 Django 的 WSGI 应用
django_app = get_wsgi_application()

# 注册一个FastAPI中间件,实现
@app.middleware("http")
async def route_middleware(request: Request, call_next):
   
    # 如果路径是 /gradio,则调用call_next,FastAPI框架会交给已经注册的 Gradio程序 处理
    if request.url.path.startswith("/gradio"):
        return await call_next(request)
    
    # 否则交给Django处理
    response = Response()
    
    async def send(message):
        if message['type'] == 'http.response.start':
            response.status_code = message['status']
            response.headers.update({k.decode(): v.decode() for k, v in message['headers']})
        elif message['type'] == 'http.response.body':
            response.body += message.get('body', b'')  # 注意这里用 += 来累积响应体
            
    await WSGIMiddleware(django_app)(request.scope, request.receive, send)
    
    response.headers["content-length"] = str(len(response.body))
    return response

这段代码的逻辑也比较简单,先创建FastAPI应用,然后将Gradio程序挂载到FastAPI,这里使用的是Gradio自带的mount_gradio_app方法,然后创建了一个FastAPI的中间件,对不同的路由使用不同的处理。

重点就在这个FastAPI中间件,它可以保证通过 /gradio 访问到Gradio程序,通过 / 访问到 Django 程序。

如果我们使用下面的这种方式来代理 Django,实测将不能通过 /gradio 访问到Gradio程序,无论 Gradio 和 Django 谁先注册。如果你的环境可以,欢迎留下你的各个 package 的版本。

app.mount("/", WSGIMiddleware(django_app))

静态文件的访问

因为静态文件是每个Web程序几乎避不开的,比如图片、css、js等,所以这里特别提下。

在上边的路由中间件中,除了 /gradio 会路由到Gradio程序,其它都会走Django进行处理,静态文件也不例外。

这里假设静态文件放在 static 目录下。

打开 myproject/settings.py,这是 Django 项目的基础设置文件,修改其中静态文件的部分:

STATIC_URL = '/static/'
if DEBUG:
    STATICFILES_DIRS = [
        os.path.join(BASE_DIR, "static"),
    ]
else:
    STATIC_ROOT = os.path.join(BASE_DIR, 'static')

打开 myproject/urls.py,修改其中的路由定义,增加 re_path 这一行。

urlpatterns = [
    re_path('^static/(?P<path>.*)', serve, {'document_root': settings.STATIC_ROOT}),
    path('', include('myapp.urls')),  # 包含 myapp 的 URL 配置
]

这样可以在调测和生产环境都能正常访问 static 目录下的静态文件,而不用再进行不同的设置。

总结

本文分享了一种整合 Gradio 和 Django 程序的方法,在这种方法下,Gradio 和 Django 可以使用同一个进程,使用相同的端口号对外服务,同时Gradio程序使用子目录 /gradio 进行访问,Django 程序使用根目录 / 进行访问。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 如何使用 Gradio 测试 FastAPI 接口 为了测试 FastAPI Gradio 的集成效果,可以按照以下方式设计并实现一个简单的示例项目。此项目的目的是验证两者之间的通信以及功能的正常运作。 #### 创建 FastAPI 应用 首先需要创建一个基础的 FastAPI 应用程序,并定义一些基本路由来处理来自 Gradio 的请求: ```python from fastapi import FastAPI, UploadFile, File import gradio as gr app = FastAPI() @app.post("/predict/") async def predict(file: UploadFile = File(...)): contents = await file.read() result = process_data(contents) # 假设有一个函数用于数据处理 return {"result": str(result)} ``` 上述代码片段展示了如何设置一个 `/predict/` 路由[^1],该路由接受文件上传并通过 `process_data()` 函数对其进行处理后返回结果。 #### 将 Gradio 程序挂载至 FastAPI 接着利用 Gradio 提供的功能将其前端界面嵌入到 FastAPI 中: ```python def launch_gradio(): with gr.Blocks() as demo: input_file = gr.File(label="Upload a file") output_text = gr.Textbox(label="Result") submit_button = gr.Button(value="Submit") submit_button.click(fn=predict_handler, inputs=input_file, outputs=output_text) app.mount("/", gr.routes.App(demo)) launch_gradio() ``` 在此部分中,我们构建了一个基于 Blocks 的 Gradio 用户界面组件,并通过 `mount_gradio_app` 方法将整个 Gradio 实例附加到了 FastAPI 上下文中^。 #### 添加自定义中间件支持多路径访问控制 如果希望进一步增强灵活性,则可以通过引入额外的中间件机制区分针对不同资源类型的请求行为模式: ```python from starlette.middleware.base import BaseHTTPMiddleware class RouteMiddleware(BaseHTTPMiddleware): async def dispatch(self, request, call_next): response = await call_next(request) if request.url.path.startswith('/gradio'): # 特定于 Gradio 页面的行为调整 pass elif request.url.path == '/predict': # 对预测接口的具体优化措施 pass return response app.add_middleware(RouteMiddleware) ``` 这样做的好处在于能够更精细地管理各个子系统的独立性耦合度,从而提高整体架构的设计质量^。 #### 结论 综上所述,借助 Gradio 自带的方法可以直接无缝衔接进现有的 FastAPI 生态体系里去[^2];与此同时,在当前这个充满活力的大规模预训练语言模型领域里面,合理运用这些工具无疑会极大地方便我们的日常开发工作流程,让复杂的机器学习算法变得触手可及[^3]^。另外值得注意的一点就是关于具体应用场景的选择问题——比如前面提到过的那篇博文就给出了非常详尽的实际操作指南[^4]^,而另一份资料则着重强调了怎样依靠官方推荐的最佳实践方案快速搭建起属于自己的专属服务平台[^5]^。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值