经常接触机器学习的同学可能都接触过Gradio这个框架,Gradio是一个基于Python的专门为机器学习项目创建的快速开发框架,可以让开发者快速发布自己的模型给用户测试,目前Huggingface上的机器学习项目都是基于Gradio对外提供服务的。
不过Gradio的目标是机器学习模型的快速演示,真正为用户提供服务时,我们还有很多需要关注的方面,比如用户的鉴权授权、消息通知、静态页面、SEO优化等等,这些使用Gradio有点捉襟见肘,我们还需要使用更加成熟的Web开发框架,比如Django这种。
但是我们初期可能已经用Gradio做了很多的功能,不想重写这些东西,这时候就产生了集成Gradio到其它框架的需求。这篇文章就来分享如何将Gradio集成到成熟的Web框架Django,以方便后来者。
创建Django项目
这里假设我们已经有了一个Gradio的项目,将在这个项目中继续创建一个Django项目。
创建 Django 项目
首先通过 pip 安装 Django:
pip install django
然后在程序的根目录初始化Django项目的一些基础文件:
django-admin startproject myproject
cd myproject
这里的 myproject 需要替换成你的 Django 项目名。
然后我们还要继续创建 Django 应用,应用可以理解为模块,比如项目下有管理模块、用户模块、支付模块和具体的业务单元模块。每个应用都有自己的模型、视图、模板和 URL 路由。
python manage.py startapp myapp
请将myapp改为你的应用名称。
执行完这些命令之后,项目中将会增加一些Django的框架脚本。
创建 Django 页面
有了Django的基础脚本,然后就可以开发Web页面了。
1个页面涉及三个方面:视图、路由和HTML模板,还是以 myapp 为例:
在 myapp/views.py 中创建一个视图:
from django.shortcuts import render
def index(request):
return render(request, 'index.html')
在 myapp/urls.py 中设置 URL 路由到这个视图:
from django.urls import path
from .views import index
urlpatterns = [
path('', index, name='index'),
]
在 myapp/templates/index.html 创建 HTML 模板:
<!DOCTYPE html>
<html>
<head>
<title>Gradio in Django</title>
</head>
<body>
<h1>Welcome to My App</h1>
</body>
</html>
然后我们就可以启动程序,在浏览器访问这个页面了:
uvicorn myproject.wsgi:application --reload
启动程序使用的是 uvicorn工具,myproject是项目的名称,wsgi对应到myproject文件夹下的 wsgi.py。
集成Gradio到Django
准备一个Gradio项目
为了演示,这里准备一个Gradio的程序。
假设文件路径为:gradio/app.py
import gradio as gr
def greet(name):
return f"Hello {name}!"
# 定义 Gradio 接口
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
整合 Gradio 和 Django
现在我们把 Gradio 集成到 Django 中,它们将在同一个进程中运行,对外使用一个端口号。Django 默认通过根目录 / 进行访问,Gradio则通过 /gradio 进行访问。
这里走过一些弯路,有问题的方法就不讲了,直接给出我的方案。
这里还要引入一个框架 FastAPI,我们将使用 FastAPI 来代理对 Gradio 和 Django 的访问,所以其实不是将Gradio集成到Django,这个方法本质上是将 Gradio 和 Django 整合到一起。
打开 myproject/wsgi.py,这是 Django 项目的主文件:
import os
from django.core.wsgi import get_wsgi_application
from fastapi import Request, Response
from starlette.middleware.wsgi import WSGIMiddleware
import gradio as gr
from gradio.app import demo
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myproject.settings')
# 创建 FastAPI 应用
app = FastAPI()
# 挂载 Gradio 到FastAPI,注意这个path要和下边中间件中的一致
app = gr.mount_gradio_app(app, demo, path="/gradio")
# 获取 Django 的 WSGI 应用
django_app = get_wsgi_application()
# 注册一个FastAPI中间件,实现
@app.middleware("http")
async def route_middleware(request: Request, call_next):
# 如果路径是 /gradio,则调用call_next,FastAPI框架会交给已经注册的 Gradio程序 处理
if request.url.path.startswith("/gradio"):
return await call_next(request)
# 否则交给Django处理
response = Response()
async def send(message):
if message['type'] == 'http.response.start':
response.status_code = message['status']
response.headers.update({k.decode(): v.decode() for k, v in message['headers']})
elif message['type'] == 'http.response.body':
response.body += message.get('body', b'') # 注意这里用 += 来累积响应体
await WSGIMiddleware(django_app)(request.scope, request.receive, send)
response.headers["content-length"] = str(len(response.body))
return response
这段代码的逻辑也比较简单,先创建FastAPI应用,然后将Gradio程序挂载到FastAPI,这里使用的是Gradio自带的mount_gradio_app方法,然后创建了一个FastAPI的中间件,对不同的路由使用不同的处理。
重点就在这个FastAPI中间件,它可以保证通过 /gradio 访问到Gradio程序,通过 / 访问到 Django 程序。
如果我们使用下面的这种方式来代理 Django,实测将不能通过 /gradio 访问到Gradio程序,无论 Gradio 和 Django 谁先注册。如果你的环境可以,欢迎留下你的各个 package 的版本。
app.mount("/", WSGIMiddleware(django_app))
静态文件的访问
因为静态文件是每个Web程序几乎避不开的,比如图片、css、js等,所以这里特别提下。
在上边的路由中间件中,除了 /gradio 会路由到Gradio程序,其它都会走Django进行处理,静态文件也不例外。
这里假设静态文件放在 static 目录下。
打开 myproject/settings.py,这是 Django 项目的基础设置文件,修改其中静态文件的部分:
STATIC_URL = '/static/'
if DEBUG:
STATICFILES_DIRS = [
os.path.join(BASE_DIR, "static"),
]
else:
STATIC_ROOT = os.path.join(BASE_DIR, 'static')
打开 myproject/urls.py,修改其中的路由定义,增加 re_path 这一行。
urlpatterns = [
re_path('^static/(?P<path>.*)', serve, {'document_root': settings.STATIC_ROOT}),
path('', include('myapp.urls')), # 包含 myapp 的 URL 配置
]
这样可以在调测和生产环境都能正常访问 static 目录下的静态文件,而不用再进行不同的设置。
总结
本文分享了一种整合 Gradio 和 Django 程序的方法,在这种方法下,Gradio 和 Django 可以使用同一个进程,使用相同的端口号对外服务,同时Gradio程序使用子目录 /gradio 进行访问,Django 程序使用根目录 / 进行访问。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓