LLaMA-Factory——开源大模型微调框架,支持高效微调DeepSeek

LLaMA-Factory 是一个开源的大模型微调框架,旨在为研究人员和开发者提供一个高效、灵活且易于使用的工具,用于对各种大规模语言模型(LLMs)进行微调。该项目支持多种模型架构、训练方法和数据集,适用于不同的应用场景和硬件环境,极大地降低了大模型微调的门槛。

图片

图片

开源地址:https://github.com/hiyouga/LLaMA-Factory

开源协议:Apache-2.0

01.项目介绍 LLaMA-Factory

多样性支持

  • 多种模型:支持 LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、DeepSeek、Yi、Gemma、ChatGLM、Phi 等众多主流大模型。

  • 集成方法:涵盖(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练等多种训练方法。

  • 多种精度:支持 16 比特全参数微调、冻结微调、LoRA 微调以及基于量化技术的 2/3/4/5/6/8 比特 QLoRA 微调。

先进技术集成

  • 先进算法:集成了 GaLore、BAdam、APOLLO、Adam-mini、DoRA、LongLoRA、LLaMA Pro 等先进优化算法。

  • 实用技巧:采用 FlashAttention-2、Unsloth、Liger Kernel 等技术提升训练效率和性能。

广泛任务适配

适用于多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等多种任务场景。

实验监控与推理

  • 实验监控:支持 LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等多种实验监控工具。

  • 极速推理:基于 vLLM 实现 OpenAI 风格 API、浏览器界面和命令行接口,提供高效的推理能力。

02.支持模型与训练准备支持的模型

涵盖多种主流大模型,包括但不限于:

模型名

参数量

Template

Baichuan 2

7B/13B

baichuan2

BLOOM/BLOOMZ

560M/1.1B/1.7B/3B/7.1B/176B

-

ChatGLM3

6B

chatglm3

Command R

35B/104B

cohere

DeepSeek (Code/MoE)

7B/16B/67B/236B

deepseek

DeepSeek 2.5/3

236B/671B

deepseek3

DeepSeek R1 (Distill)

1.5B/7B/8B/14B/32B/70B/671B

deepseek3

Falcon

7B/11B/40B/180B

falcon

Gemma/Gemma 2/CodeGemma

2B/7B/9B/27B

gemma

GLM-4

9B

glm4

GPT-2

0.1B/0.4B/0.8B/1.5B

-

Granite 3.0-3.1

1B/2B/3B/8B

granite3

Index

1.9B

index

InternLM 2-3

7B/8B/20B

intern2

Llama

7B/13B/33B/65B

-

Llama 2

7B/13B/70B

llama2

Llama 3-3.3

1B/3B/8B/70B

llama3

Llama 3.2 Vision

11B/90B

mllama

LLaVA-1.5

7B/13B

llava

LLaVA-NeXT

7B/8B/13B/34B/72B/110B

llava_next

LLaVA-NeXT-Video

7B/34B

llava_next_video

MiniCPM

1B/2B/4B

cpm/cpm3

MiniCPM-o-2.6/MiniCPM-V-2.6

8B

minicpm_o/minicpm_v

Ministral/Mistral-Nemo

8B/12B

ministral

Mistral/Mixtral

7B/8x7B/8x22B

mistral

Mistral Small

24B

mistral_small

OLMo

1B/7B

-

PaliGemma/PaliGemma2

3B/10B/28B

paligemma

Phi-1.5/Phi-2

1.3B/2.7B

-

Phi-3/Phi-3.5

4B/14B

phi

Phi-3-small

7B

phi_small

Phi-4

14B

phi4

Pixtral

12B

pixtral

Qwen/QwQ (1-2.5) (Code/Math/MoE)

0.5B/1.5B/3B/7B/14B/32B/72B/110B

qwen

Qwen2-Audio

7B

qwen2_audio

Qwen2-VL/Qwen2.5-VL/QVQ

2B/3B/7B/72B

qwen2_vl

Skywork o1

8B

skywork_o1

StarCoder 2

3B/7B/15B

-

TeleChat2

3B/7B/35B/115B

telechat2

XVERSE

7B/13B/65B

xverse

Yi/Yi-1.5 (Code)

1.5B/6B/9B/34B

yi

Yi-VL

6B/34B

yi_vl

Yuan 2

2B/51B/102B

yuan

训练准备

支持多种训练方法,包括预训练、指令监督微调、奖励模型训练等,且每种方法都支持全参数训练、部分参数训练、LoRA 和 QLoRA。

数据集

提供丰富的预训练数据集和指令微调数据集,如 Wiki Demo、RefinedWeb、Stanford Alpaca、Glaive Function Calling V2、BELLE 系列等,满足不同任务需求。

软硬件依赖

软件依赖

必需项

至少

推荐

python

3.9

3.10

torch

1.13.1

2.5.1

transformers

4.41.2

4.49.0

datasets

2.16.0

3.2.0

accelerate

0.34.0

1.2.1

peft

0.11.1

0.12.0

trl

0.8.6

0.9.6

可选项

至少

推荐

CUDA

11.6

12.2

deepspeed

0.10.0

0.16.2

bitsandbytes

0.39.0

0.43.1

vllm

0.4.3

0.7.3

flash-attn

2.3.0

2.7.2

硬件依赖

根据不同精度和模型规模,对硬件要求有所不同。例如,对于 4 比特 QLoRA 微调,7B 模型需要约 6GB 显存,13B 模型需要约 12GB 显存。

图片

应用场景

LLaMA-Factory 可广泛应用于多种领域,如广告文案生成、多轮对话系统、工具调用智能体、图像理解与分析、视频内容识别、语音指令理解等,为各行业提供强大的语言模型微调解决方案。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

### 使用 LLama-Factory 微调开源模型 #### 准备环境与安装依赖 为了使用 LLama-Factory开源模型进行微调,首先需要准备合适的开发环境并安装必要的软件包。这通常涉及到设置 Python 虚拟环境以及安装 PyTorch 和其他依赖项。 #### 配置训练参数文件 配置文件定义了用于微调的具体参数和选项。对于 `Llama3-8B-Instruct` 模型而言,可以通过 YAML 文件指定这些细节[^1]: ```yaml model_name_or_path: "path_to_model" output_dir: "./results" per_device_train_batch_size: 4 gradient_accumulation_steps: 2 learning_rate: 5e-6 num_train_epochs: 3 logging_dir: './logs' ``` 此配置示例展示了如何调整批量大小、学习率和其他超参数来优化训练过程。 #### 执行微调操作 一旦完成了上述准备工作,则可通过 CLI 命令执行实际的微调流程。具体来说,就是运行如下命令来进行基于 LoRA 的微调工作[^3]: ```bash CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml ``` 这条指令指定了 GPU 设备编号,并加载预设好的配置文件路径以启动训练任务。 #### 进行推理测试 完成微调之后,可以立即对该改进后的模型做初步评估。同样借助于 CLI 工具,只需更改子命令即可切换到推理模式: ```bash CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml ``` 该命令允许用户与经过微调的大规模语言模型交互对话,从而直观感受其表现变化。 #### 合并权重保存成果 最后一步是将原始模型与新学到的知识相结合,形成最终版本供后续部署或进一步迭代之用。这一环节也十分简单明了: ```bash CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml ``` 通过这种方式能够有效地保留所有更新过的参数而不会丢失原有结构特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值