多智能体具身智能绝对是下一个AI爆点

今天给大家分享一篇非常出色的综述论文,总结了当前Multi-Agent Embodied AI(多智能体具身智能)的研究进展。这篇文章不仅回顾了超过300篇相关论文,还从多个角度探讨了这个快速演化的领域将如何影响我们对智能体未来的构建方式。

🧭 为什么 Multi-Agent Embodied AI 很重要?

当前的大多数研究仍然集中在单一智能体的范式上。但我们所生活的真实世界却远比“一个智能体”复杂得多——它是开放的、异质的、动态变化的。

这篇综述论文强调了协作式、多智能体系统的必要性——尤其是在物理环境中感知、行动、学习并适应的智能体团队。随着机器人协作、智能制造、自动驾驶车队、家庭服务机器人等场景的日渐成熟,Multi-Agent Embodied AI 的研究正迎来前所未有的发展机遇。

Image

🔍 Embodied AI 的三大核心支柱

文章指出,Embodied AI(具身智能)之所以独特,核心在于三个方面:

1. Embodiment(具身性):拥有一个物理身体,在物理世界中感知与行动;

2. Interactivity(交互性):与环境持续互动,而非仅在静态数据上推理;

3. Adaptation(适应性):通过经验持续学习、改进与演化。

这三大支柱共同构建出一个可以真正“行动在世界中”的智能体。而多智能体的研究正是对这一结构的扩展和深化。

Image

🤝 多智能体 Embodied AI:协作的新范式

多智能体具身智能部分系统性地探讨了多个物理智能体在动态环境中协作的方式,其主要研究方向包括:

  • 基于控制的策略:如任务分配、集体路径规划;

  • 基于学习的方法:应对异步、异质智能体的协作难题;

  • 生成式模型(Generative Models)的引入:LLMs 等模型正在帮助智能体完成协作规划、自然语言沟通,甚至更自然的人机协作;

文中还强调了任务分配、去中心化决策、真实世界协调能力等研究热点,尤其提出构建可扩展学习机制鲁棒的多智能体评估基准是该领域发展的瓶颈与突破口。

Image

♻️ 自进化的多智能体系统:让智能体“自己成长”

一个特别有趣的板块是关于自进化学习(Self-Evolving Multi-Agent Learning)的讨论。

传统智能体常依赖静态策略和结构,但真实世界是不断变化的:任务可能不同、协作者可能更替、甚至目标也在演化。

为此,研究者提出了一系列机制来让智能体系统“自我成长”:

  • 自我博弈(Self-play)

  • 策略进化(Policy Evolution)

  • 可扩展架构(如 Transformer、图神经网络)

这样的系统可以适应动态团队规模历史经验迁移,并理解新协作者或对手的行为,从而达到更鲁棒的长期协作能力。

Image

🧠 分布式决策与人机协作的新可能

文章最后深入探讨了如何实现去中心化的智能体协作,其中提到了生成式模型在该领域的潜力:

每个智能体拥有自己的生成式模型,能独立进行感知、决策、信息补全,并与其他智能体高效沟通,最终实现团队目标的协同推进。

此外,论文也展望了人类与智能体长期协作(Human-AI Collaboration)的路径——这是迈向更可信任、更实用的AI系统不可或缺的一环。

Image

    https://arxiv.org/abs/2505.05108

     

     如何系统的去学习大模型LLM ?

    大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

    事实上,抢你饭碗的不是AI,而是会利用AI的人。

    科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

    与其焦虑……

    不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

    但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

    基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

    在这个版本当中:

    第一您不需要具备任何算法和数学的基础
    第二不要求准备高配置的电脑
    第三不必懂Python等任何编程语言

    您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

    一、LLM大模型经典书籍

    AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

    在这里插入图片描述

    二、640套LLM大模型报告合集

    这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
    在这里插入图片描述

    三、LLM大模型系列视频教程

    在这里插入图片描述

    四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

    在这里插入图片描述

    五、AI产品经理大模型教程

    在这里插入图片描述

    LLM大模型学习路线 

    阶段1:AI大模型时代的基础理解

    • 目标:了解AI大模型的基本概念、发展历程和核心原理。

    • 内容

      • L1.1 人工智能简述与大模型起源
      • L1.2 大模型与通用人工智能
      • L1.3 GPT模型的发展历程
      • L1.4 模型工程
      • L1.4.1 知识大模型
      • L1.4.2 生产大模型
      • L1.4.3 模型工程方法论
      • L1.4.4 模型工程实践
      • L1.5 GPT应用案例

    阶段2:AI大模型API应用开发工程

    • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

    • 内容

      • L2.1 API接口
      • L2.1.1 OpenAI API接口
      • L2.1.2 Python接口接入
      • L2.1.3 BOT工具类框架
      • L2.1.4 代码示例
      • L2.2 Prompt框架
      • L2.3 流水线工程
      • L2.4 总结与展望

    阶段3:AI大模型应用架构实践

    • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

    • 内容

      • L3.1 Agent模型框架
      • L3.2 MetaGPT
      • L3.3 ChatGLM
      • L3.4 LLAMA
      • L3.5 其他大模型介绍

    阶段4:AI大模型私有化部署

    • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

    • 内容

      • L4.1 模型私有化部署概述
      • L4.2 模型私有化部署的关键技术
      • L4.3 模型私有化部署的实施步骤
      • L4.4 模型私有化部署的应用场景

    这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值