目录
[摘要] 互联网大数据价值的日益凸显与数据隐私保护诉求激增之间的矛盾促进了隐私计算技术的蓬勃发展,并且在银行、保险等金融科技领域取得了多场景应用探索的成果。本文分别从联合建模中去除可信第三方和匿踪查询中引入可信第三方两个方面来探讨可信第三方在隐私计算技术应用时的必要性。
[关键字] 金融科技 隐私计算 可信第三方
1. 隐私计算在金融领域中的典型应用
近年来,随着大数据与人工智能技术在各行各业的广泛应用,“数据”作为新型生产要素的重要性急剧上升。同时,反复出现的数据安全与隐私泄露问题也愈发被大众关注,数据使用与隐私保护之间的矛盾日益突出。隐私数据的收集与使用曾一度处于灰色地带,但随着近几年国内外一系列数据安全与隐私保护相关政策法规的出台,以往的粗放式数据收集、使用与交易模式将被严格规范和限制。
在这样的行业背景下,如何在合法合规的前提下既能保护数据安全与隐私、又能促进数据流通与共享成为重要的研究方向。
基于计算机、通信、数学、密码学等多学科交叉的隐私保护计算(Privacy-Preserving Computing,简称“隐私计算”)技术为解决上述矛盾提供了可能。其中,联邦学习(Federated Learning,FL)和安全多方计算(secure Multi-Party Computing,MPC)等代表性技术,能够将数据从逻辑上拆分为可见的具体信息部分和不可见的计算价值部分,从而在满足“数据可用不可见”的情况下,实现多方数据的协同计算和价值共享。
隐私计算技术的应用前景十分广泛,如金融、保险、政务、医疗、支付、征信等,其中金融保险场景因为对于多方数据的需求最为强烈,并且属于被强监管行业,所以成为了当前隐私计算技术应用探索最为活跃的领域,特别是在风控建模、精准营销、反欺诈这几个业务环节。
隐私计算与风控建模
建立精准的信贷风控模型可以提高金融机构的审批效率,降低人工成本,减少由于非客观判断原因造成的失误风险。以消费信贷场景为例,目前银行、互联网金融、消费金融等机构建立智能风控模型往往需要结合身份、学历、消费、通信、征信等多种外部数据。在传统的联合建模方式中,样本数据需要被归集到某一方或第三方特定环境中,在这个过程中,多方数据有脱离私域的安全合规风险,而通过直接的联邦学习或基于安全多方计算的机器学习,就可以在各方数据不出私域的条件下通过分布式的协同加密计算实现联合建模,并且还能保障模型不泄露、质量无损耗。
图1 联合建模的方式演变