主要内容: 光电+电负荷用有序聚类,
风电+电动汽车负荷用kmeans聚类
① 画出光电、电负荷、风电、电动汽车负荷,根据趋势去判定,
让光电+电负荷用有序聚类,风电+电动汽车负荷用kmeans聚类
②对光电有序聚类(分开),根据轮廓系数找出合适的断点向量
③对电负荷有序聚类(分开),根据轮廓系数找出合适的断点向量
④将②③的断点合并,取异,对密集的进行删减
⑤利用④中的分割点,找出各个分区
⑥将风电+电动汽车负荷(组合)合并为365*48,一次性带入kmeans中求解得到分区内(风电电动汽车负荷)的聚类图
⑦将四个风光荷EV特征,各自在分区分组内取均值,得到典型日场景及频次
。
光电+电负荷用有序聚类,风电+电动汽车负荷用kmeans聚类
随着科技的不断进步和应用,能源的需求和供应成为了全球关注的焦点。而电力系统中的负荷预测则是电力行业的重要研究领域之一,其中负荷聚类是一种常用的预测方法。
本文针对光电和电动汽车及风电和电动汽车两种负荷类型进行了有序聚类和k-means聚类分析,为电力负荷预测提供了一种新的解决方案。
首先,对于光电和电负荷以及风电和电动汽车负荷的趋势进行判定。然后,我们采用有序聚类和k-means聚类方法,分别对光电+电负荷和风电+电动汽车负荷进行聚类分析。具体地,对于光电有序聚类,我们采用轮廓系数的方法找到合适的断点向量,而对于电负荷的有序聚类,同样采用轮廓系数的方法找到了合适的断点向量。然后将这些断点进行合并,并通过取异的方法对密集的断点进行删减。接下来,我们利用这些分割点找出各个分区,并将风电和电动汽车负荷组合起来,将其合并为365*48的矩阵,用k-means算法对其进行聚类分析,得到了风电和电动汽车负荷的聚类图。
最后,我们将四个负荷类型的特征在各自分组内取均值,得到了典型日场景及频次,为电力负荷预测提供了可靠的依据。
总之,本文采用了有序聚类和k-means聚类方法对光电+电负荷和风电+电动汽车负荷进行了分析和研究,为电力负荷预测提供了一种新的解决方案。未来,我们将进一步完善该方法,并应用于实际情况中,为我国的能源发展做出贡献。
相关代码,程序地址:http://lanzouw.top/680906439748.html