利用NetworkX计算pagerank值

import networkx as nx

# 创建有向图

G = nx.DiGraph()#创建空图

# 有向图之间边的关系

edges = [("A", "B"), ("A", "C"), ("A", "D"), ("B", "A"), ("B", "D"), ("C", "A"), ("D", "B"), ("D", "C")]

for edge in edges:

    G.add_edge(edge[0], edge[1])、

pagerank_list = nx.pagerank(G, alpha=1)

print("pagerank 值是:", pagerank_list)

'''
g=net.Graph()  #创建空图
g.add_edge('a','b') #插入一条连接a,b的边到图中,节点将自动插入
g.add_edge('b','c') #再插入一条连接b,c的边
g.add_edge('c','a') #再插入一条连接c,a的边
net.draw(g)         #输出一个三角形的图
'''

构建网络图基础代码可以参考:https://blog.csdn.net/pipisorry/article/details/49839251
关于pagerank的基础知识可参考:
https://www.cnblogs.com/jpcflyer/p/11180263.html
https://blog.csdn.net/hguisu/article/details/7996185

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值