R-CNN Fast-RCNN Faster-RCNN

文章介绍了R-CNN、FastR-CNN和FasterR-CNN三种目标检测算法的发展,从基于SelectiveSearch的R-CNN,改进为FastR-CNN的ROIpooling和共享特征,再到FasterR-CNN引入的区域提议网络(RPN)以提高速度和性能。这些算法逐步解决了效率和准确性的问题,对深度学习目标检测领域产生了重要影响。
摘要由CSDN通过智能技术生成

论文链接

视频链接:1.1Faster RCNN理论合集_哔哩哔哩_bilibili 

参考博客:一文读懂Faster RCNN(大白话,超详细解析)_风中一匹狼v的博客-CSDN博客

R-CNN

主体框架:

R-CNN算法流程分为四个步骤

  1. (采用Selective Search方法)在一张图片上生成2k个候选区域
  2. 对每个候选区域,使用深度网络提取特征,对于每一个候选区生成一个4096维的向量
  3. 特征向量送入每一类的SVM分类器,判别是否属于该类特征,其中SVM的维度是4069 x N ,N表示类别数
  4. 使用回归器精细修正候选框位置

R-CNN存在的问题

  • 测试速度慢:一张图片内候选框之间存在大量重叠,提取特征操作冗余
  • 训练速度慢:过程繁琐
  • 训练所需空间大:对于SVM和bbox回归训练,需要从每个图片中的每个目标候选框提取特征,并写入磁盘用于计算。

两个创新点:

  • 将高容量的卷积神经网络( CNNs )应用到自底向上的区域建议中,以定位和分割目标;
  • 当有标记的训练数据稀缺时,对辅助任务进行有监督的预训练,然后进行特定领域的微调,产生显著的性能提升

 根据研究表明,超过5400万的参数的全连接层并不是关键,他们中94%的参数省去,对测量的精度只有一些稍微的下降,但是卷积层会有丰富的特征。

Fast-RCNN

主体框架

 Fast-RCNN算法主要分为以下三个部分

  1. 采用SS算法将一张图片生成1K-2K个候选区域
  2. 将图像输入网络得到相应的特征图,将SS算法生成的候选框投影到特征图上获得相应的特征矩阵
  3. 将每个特征矩阵通过ROI pooling层缩放到7X7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果

如图所示,并联了两个全连接层,一个用于输出分类类别的概率(N+1 具有背景),另一个是输出边界框的回归参数(4(N+1))

在训练过程中并不是采用SS算法生成的所有候选区域,只是采样了一部分

ROI pooling结构

对于每个特征矩阵,我们将其划分成7X7的样式,对于每一个小的格子我们都可以进行maxpooling操作,此时不需要规定输入图片的尺寸,但是可以将其统一成大小一致的特征图

Faster-RCNN

主体框架

                                左图为Faster-RCNN的结构,右图是RPN网络 

Faster-RCNN主要分为如下三个部分

  1. 将图像输入网络得到相应的特征图
  2. 使用RPN结构生成候选框,将RPN生成的候选框投影到特征图上获得相应的特征矩阵
  3. 将每个特征矩阵通过ROI pooling层缩放到7X7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。

                256-d 是因为采用了ZF的骨干网络,当采用VGG16骨干网络时此时为512。

Faster RCNN 存在的问题

  1. 对小目标检测效果很差(通过特征图直接计算,抽象的层次较高)
  2. 模型大,检测速度较慢 (检测分为了两个步骤计算)

RPN网络

在这里插入图片描述

如图所示,红色圈出来的就是我们生成anchor的结构,对于经过骨干网络生成的特征图的每一个像素点,我们分别生成9个anchor。后续还会淘汰一批anchor并且修正anchor的位置。

RPN结构分为上下两条线,上面一条线,通过1x1的卷积操作生成2k个输出,分别预测是前景和背景的概率。下面一条线,通过1x1的卷积生成4k个输出,这里是每个anchor坐标的偏移量,并不是坐标本身。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值