论文笔记:Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph

论文来源:ICLR 2024

论文地址:pdf (openreview.net)

论文代码:IDEA-FinAI/ToG: This is the official github repo of Think-on-Graph. If you are interested in our work or willing to join our research team in Shenzhen, please feel free to contact us by email (xuchengjin@idea.edu.cn)

Sun, Jiashuo, et al. "Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph." The Twelfth International Conference on Learning Representations. 2024.


Abstract

        尽管大语言模型在各种任务中取得了显著的效果,但是经常存在幻觉问题。通过在LLM推理中引入外部知识图谱可以解决部分问题。本文提出一种新的LLM-KG集成范式,将LLM视为一个代理,交互探索KG上的相关实体和关系,并基于检索到的知识进行推理。作者引入一种名为在图上思考(Think-on-Graph, ToG)的方法来进一步实现这一范式,LLM代理在KG上迭代执行波束搜索,发现最优路径,并返回最有可能的推理结果。ToG方法的优点:① 与LLM相比,ToG具有更好的深度推理能力;② ToG通过利用LLM推理和专家反馈具有知识的可追溯性和知识可纠正性;③ ToG为不同的LLM、KG和提示策略提供了一个灵活的即插即用的框架,不需要额外的训练成本。④ 在某些情况下,使用小型的LLM模型的ToG的性能可能超过大型LLM,如GPT4,这降低了LLM部署和应用成本。

Introduction

        LLM实现推理任务时,存在的挑战:① LLM通常无法准确回答超出预训练阶段所包含的知识(过时的知识)的问题,也无法回答需要长逻辑链和多跳推理的问题;② 幻觉问题;③ LLM的训练代价高,导致知识更新具有挑战性。(Figure 1(a))

        从KG中检索信息,相应地增加提示,并将提示输入带LLM中的方法,不直接参与图推理过程,这需要KG具有高完整度和高质量,否则,可能检索失败。(Figure 1(b))

        本文提出的ToG方法,KG和LLM协同工作,在图推理的每一步中补充彼此的能力,通过这种方式,LLM可以利用从KG中检索到的可靠知识生成正确答案。(Figure 1(c))具体来说,给定一个输入问题,ToG首先识别初始实体,然后迭代调用LLM通过探索和推理从KG中检索相关的三元组,直到通过波束搜索的top-N个推理路径获得足够的信息来回答问题,或达到预定义的最大搜索深度。

Methods

        ToG的整个推理过程包括3个阶段:初始化、探索、推理。

Think-on-Graph

Initialization of graph search

        给定一个问题,ToG利用底层LLM来定位在KG上的推理路径的初始实体,这个阶段可以被视为Top-N个推理路径P的初始化。ToG首先提示LLM自动抽取问题中的主题实体,并获得该问题的Top-N个主题实体E^0=\left \{ e^0_1, e^0_2, ..., e^0_N\right \}

Exploration

        在第d次迭代开始时,每个路径p_n包含D-1个三元组,即p_n=\left \{ \left ( e_{s,n}^d ,r_{j,n}^d,e_{o,n}^d\right ) \right \}_{d=1}^{D-1},其中,e_{s,n}^de_{o,n}^d分别是头尾实体,r_{j,n}^d是他们之间的关系,\left ( e_{s,n}^d ,r_{j,n}^d,e_{o,n}^d\right )\left ( e_{s,n}^{d+1} ,r_{j,n}^{d+1},e_{o,n}^{d+1}\right )之间是相互连接的,P中的尾实体集和关系集分别被表示为E^{D-1}=\left \{ e^{D-1}_1, e^{D-1}_2, ..., e^{D-1}_N\right \}R^{D-1}=\left \{ r^{D-1}_1, r^{D-1}_2, ..., r^{D-1}_N\right \}

        探索阶段的第D次迭代的目的是利用LLM基于问题x从当前Top-N的实体集E^{D-1}的邻接实体中识别出最相关的top-N的实体集E^D。为了解决LLM处理众多邻接实体的复杂性,本文采用两步探索策略:首先,探索重要的关系,然后使用选择的关系来指导实体探索。

Relation Exploration 

        关系探索是一个深度为1,宽度为N,从E^{D-1}R^D的光束搜索过程。整个过程可以分解为两步(搜索和剪枝),使用LLM自动完成。

        Search

        在第D次迭代开始时,关系探索阶段首先为每个推理路径p_n搜索连接到尾实体e^{D-1}_n的关系R_{cand,n}^D,这些关系被聚合成R_{cand}^D

        Prune

        当从关系搜索中获得了候选关系集R_{cand}^D和扩展的候选推理路径P_{cand},利用LLM基于问题x的文本信息和候选关系R_{cand}^D,从P_{cand}中选择新的以尾关系R^D结尾的Top-N的推理路径P。

Entity Exploration

        与关系探索类似,实体探索也是利用LLM从R^DE^D执行波束搜索的过程,包括搜索和剪枝两个步骤。

       Search

        当从关键探索中获得新的Top-N 的推理路径P和新的为关系R^D后,对于每个关系路径p_n\in P,通过查询\left ( e_n^{D-1}, r_n^D,? \right )\left ( ?,r_n^D,e_n^{D-1} \right )探索候选实体集E_{cand,n}^D,然后将\left \{ E_{cand,1}^D,E_{cand,2}^D,...,E_{cand,N}^D \right \}聚合到E_{cand}^D,并将Top-N的推理路径P扩展到具有尾实体E_{cand}^DP_{cand}^D中。

        Prune

        由于每个候选集合E_{cand}^D中的实体都是自然语言表示的,所以可以利用LLM来选择以P_{cand}中的E^D结尾的Top-N的推理路径P

Reasoning

        通过探索得到当前推理路径P后,提示LLM评估当前的推理路径是否足以生成答案。如果评估产生积极结果,则提示LLM利用查询得到的推理路径生成答案,如果评估结果消极,则基线执行探索和推理步骤,直到评估结果积极,或达到最大搜索深度后利用LLM中的内在知识生成答案。

Relation-Based Thing-on Graph

基于关系的ToG从主题实体\left \{ e_n^0 \right \}_{n=1}^N开始探索Top-N的关系链\left \{ p_n=\left ( e_n^0,r_n^1,r_n^2,...,r_n^D \right ) \right \}_{n=1}^NToG-R与ToG相同,每次迭代都一次执行关系搜索、关系剪枝、实体搜索,然后ToG-R基于所有的通过实体搜索获得的以E_{cand}^D结尾的候选关系路径执行推理步骤。如果LLM确定检索到候选推理路径不足以回答问题,则从候选实体E_{cand}^D中随机采样N个实体,继续下一次迭代。假设每个实体集E_{cand,n}^D中的实体可能属于同一个实体类型并包含相似的邻域关系,修剪实体集\left \{E_{cand,n}^D \right \}_{n=1}^N的结果可能对后续的关系探索影响不大,因此,ToG-R使用的是随机波束搜索进行实体剪枝,而不是ToG中使用的LLM约束的波束搜索。

与ToG相比,TOG-R的好处:① 消除了使用LLM进行实体剪枝过程的需要,减少了总体成本和推理时间;② ToG-R强调关系的文本信息,减少了当中间实体丢失或陌生时对LLM产生的错误指导。

  • 9
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值