前 言
大规模语言模型在多种自然语言处理相关任务上展现了惊人的能力,如智能问答等,但是其推理能力尚未充分展现。本文首先介绍大模型进行推理的经典方法,然后进一步介绍知识图谱与大模型融合共同进行推理的工作。
文章一:使用思维链提示方法“召唤”大模型的推理能力
本文方法主要提出了一个提示词构建方法,通过大规模语言模型完成复杂的推理任务。大量实验表明本文所提方法能够显著提高大模型执行复杂推理的能力。该项工作动机是人在进行复杂任务推理时往往将问题分解为多步简单问题,逐步解决每个简单问题后即可推理得到复杂问题的最终答案。
如下图例子中,左边是传统的提示词方法,首先给出一组问题样例及答案,然后给出问题,大模型输出内容即为最终答案。由于该数学问题较为复杂,大模型未能回答正确。不同于传统直接给出最终答案的提示词,右边图中的提示词在样例答案中给出了推理过程和最终答案(蓝色高亮),而大模型的回答同样给出了推理过程和正确答案。
从实验结果可以看出,思维链提示方法(橙色)比传统提示方法(黄色)的解决率提高了三倍。
本文在数学推理、常识推理和符号推理三种任务上进行了广泛的测试,测试任务示例和结果见下图。
1. 数学推理问题