基于python的音乐推荐系统【完整代码】

目录

摘要 

背景

功能介绍

前台功能

后台功能

开发环境

界面展示

前端界面

后端界面

代码结构

后端结构

前端结构

数据库设计

Django

Django 的起源与发展

核心特性

架构模式

应用场景

社区与生态

重要模块展示

分页实现

请求工具实现

权限控制模块

路由模块实现

 开源代码


摘要 

本文聚焦于基于 Python + Vue 的音乐推荐管理系统的设计与实现,旨在满足音乐平台运营者的管理需求以及用户个性化音乐推荐的诉求。系统以 Python 为核心开发语言,结合 Django 框架搭建后端架构,利用 MySQL 数据库存储数据,借助 Vue.js 打造交互性强的前端界面。为音乐平台运营者提供音乐库管理、用户行为监控及营销策略制定等功能;为用户提供基于个性化推荐算法的精准音乐推送,支持歌曲搜索、个人歌单管理、热门排行榜查看以及用户间音乐交流互动。技术层面,Python 的机器学习与数据分析库助力个性化推荐算法实现,Django 框架简化后端开发,MySQL 数据库保障数据安全存储与高效检索,Vue.js 优化用户交互体验。该系统实现音乐平台运营管理的优化,提升用户粘性,为用户带来个性化音乐服务,展示了相关技术在音乐推荐管理领域的应用价值,为同类系统开发提供参考。

背景

在数字音乐产业迅猛发展的当下,音乐平台已成为人们获取音乐的主要渠道。随着音乐资源的海量增长以及用户对音乐需求的日益个性化,音乐平台面临着巨大的挑战与机遇。对于音乐平台运营者而言,如何高效管理海量音乐资源,包括歌曲、歌手、专辑等信息,成为首要难题。传统的音乐管理方式主要依赖人工分类和简单的数据记录,不仅效率低下,而且难以对音乐资源进行全面、细致的管理。同时,运营者缺乏有效的手段分析用户行为数据,无法精准把握用户需求,导致营销策略缺乏针对性,难以吸引和留住用户。

从用户角度来看,在海量音乐中找到符合自己口味的音乐变得愈发困难。传统的音乐推荐方式往往基于热门歌曲或简单的分类推荐,无法满足用户个性化的音乐需求。用户希望能够根据自己的听歌历史、收藏偏好等,获取精准的音乐推荐,同时也期待能够便捷地管理个人音乐资源,与其他音乐爱好者交流分享。

随着信息技术的飞速发展,数字化和智能化成为音乐平台发展的必然趋势。Python 作为一种功能强大、拥有丰富库和框架的编程语言,为解决这些问题提供了技术支撑。其丰富的机器学习与数据分析库,如 Scikit-learn、Pandas 等,能够实现复杂的个性化推荐算法,为用户提供精准的音乐推荐。Django 框架以其完善的功能模块,包括用户认证系统、数据库 ORM 映射、高效路由系统等,能够快速搭建稳定的后端服务,实现业务逻辑与数据处理的高效运作。MySQL 数据库凭借其成熟稳定的特性,能够安全、高效地存储音乐数据、用户信息以及用户行为记录等海量数据。Vue.js 通过组件化开发模式,构建出动态响应式的前端界面,为用户提供流畅的交互体验。基于 Python + Vue 的音乐推荐管理系统的开发,正是顺应这一趋势,旨在解决传统音乐平台存在的痛点,实现音乐平台的智能化管理和用户个性化音乐服务的提升。

功能介绍

前台功能

  1. 首页(门户浏览)

    • 音乐展示:用户进入首页后,能够浏览音乐列表信息,其中包含最新发布以及热度较高的音乐。展示内容主要有音乐名称、歌手、专辑封面等关键信息,让用户快速知晓平台音乐动态。

    • 热门推荐:基于协同过滤推荐算法,为用户精准推荐热门音乐,帮助用户发现符合个人喜好的音乐作品,提升用户探索音乐的兴趣。

    • 搜索功能:在页面顶部设置搜索框,支持用户通过输入音乐名称、歌手名字、专辑名等关键词进行模糊搜索,方便用户迅速定位想听的音乐。

  2. 音乐详情页

    • 基本信息呈现:详细展示音乐的名称、歌手、所属专辑、简介等基本信息,让用户全面了解音乐背后的故事和创作背景。

    • 音乐评论:在详情页下侧设有评论区域,用户既能查看其他听众对该音乐的评论,也可以发表自己对音乐的独特见解、感受,促进用户之间的音乐交流与互动。

  3. 用户中心

    • 个人信息管理:用户可以在此修改基本资料,查看个人基本信息,如姓名、联系方式等,同时还能修改登录密码,保障账号安全。

    • 互动功能管理:支持用户对喜爱的音乐进行收藏、点赞操作,方便用户后续快速找到感兴趣的音乐,同时也通过这种方式为音乐热度提供数据支持。

    • 意见反馈:为用户提供提交意见反馈的入口页面,方便用户针对音乐资源、平台功能等提出建议和问题,助力平台不断优化完善。

  4. 注册登录:用户需要通过注册流程创建个人账号,并完成登录操作后,方可使用网站的各项功能。这一环节不仅保障了用户信息安全,也有助于平台的有序管理。

后台功能

  1. 音乐管理

    • 信息录入:管理员可在管理系统中录入音乐的基本信息,如名称、歌手、专辑、简介等,丰富音乐平台的资源库。

    • 信息修改:针对已录入系统的音乐信息,管理员可根据实际情况进行修改,确保音乐信息的准确性和时效性,如更新歌手信息、修正简介内容等。

    • 信息查询:方便管理员随时查询音乐的基本信息,快速获取特定音乐的详细资料,以便进行管理和维护。

  2. 类型管理

    • 类型信息管理:系统支持管理员对音乐的类型信息进行管理,主要包括添加、修改和删除音乐类型名称。通过合理分类,方便用户查找不同风格的音乐。

  3. 评论管理

    • 评论浏览与管理:管理员能够全面浏览整个网站的音乐评论信息,对包含不当内容或违反规定的评论进行处理,维护评论区的良好秩序和积极氛围。

  4. 用户管理

    • 信息管理与浏览:管理员可以管理和浏览网站用户的信息,详细查看用户的基本资料、注册时间、登录记录等信息。

    • 用户操作:具备新增用户账号的功能,用于特殊情况或为合作方创建账号;同时可以对现有用户信息进行编辑,如调整用户权限;对于违反平台规则或长期未使用的用户,可执行删除操作。

  5. 统计分析

    • 数据统计与分析:系统依据音乐的活动数据,如播放量、下载量、分享次数等,以及用户参与度相关数据,如用户对音乐的收藏数、点赞数、评论数等,进行深度统计和分析。通过这些分析结果,帮助管理员全面了解整个系统的运行状况,为音乐推荐策略调整、版权采购方向等提供有力的数据支持。

  6. 消息管理

    • 消息发布权限:音乐管理员拥有在系统上发布消息的权限,所发布的消息能够被整个网站的用户接收。管理员可借此及时向用户传达音乐平台的重要通知、新音乐上架信息、活动公告等内容。

  7. 广告管理

    • 广告发布操作:音乐管理员可在系统上发布广告消息,发布后的广告将在音乐详情页面右侧展示。通过这种方式,为音乐宣传、平台合作推广等提供有效的途径。

  8. 意见反馈

    • 反馈信息查看:音乐管理员在后台能够查看浏览用户提交的意见反馈信息,及时了解用户的需求、问题和建议。以便针对性地对音乐平台的功能、音乐资源等方面进行改进和优化。

  1. 系统信息

    • 基本信息查看:管理员可查看系统名称、服务器信息(如运行状态、带宽)、内存信息、CPU 信息、软件信息(如软件版本、插件)等基本信息,全面掌握系统运行环境与状态,保障系统稳定运行。

开发环境

  • 后端: Python 3.8 + Django 3.2

  • 前端: Javascript + Vue

  • 数据库:MySQL 5.7

  • 开发平台:Pycharm + vscode

  • 运行环境:Windows 10/11

界面展示

前端界面

后端界面

代码结构

后端结构

server  
├── myapp            // 主应用
│       └── auth                     // 认证管理
│       └── middlewares              // 中间件
│       └── permission               // 权限
│       └── views                    // 视图与接口(主要业务代码)
│       └── models.py                // 状态码
│       └── serializers.py           // 状态码
│       └── urls.py                  // 状态码
│       └── utils.py                 // 状态码
├── server             // 配置目录
├── upload             // 静态资源目录
├── requiements.txt    // 依赖项

前端结构

├── build                      // 构建相关  
├── public                     // 公共文件
│   ├── favicon.ico            // favicon图标
│   └── index.html             // html模板
├── src                        // 源代码
│   ├── api                    // 所有请求
│   ├── assets                 // 主题 字体等静态资源
│   ├── router                 // 路由
│   ├── store                  // 全局 store管理
│   ├── utils                  // 全局公用方法
│   ├── views                  // view界面
│   ├── App.vue                // 入口页面
│   ├── main.js                // 入口 加载组件 初始化等
│   └── settings.js            // 系统配置
├── .eslintignore              // 忽略语法检查
├── .eslintrc.js               // eslint 配置项
├── .gitignore                 // git 忽略项
├── babel.config.js            // babel.config.js
├── package.json               // package.json
└── vite.config.js             // vue配置

数据库设计

本系统共设计了用户信息表、分类表、音乐信息表、登录日志表、操作日志表、评论表、意见反馈表、访问记录表、广告表。详见文件夹中的《表结构.doc》。

Django

Django 的起源与发展

Django 诞生于 2003 年,由劳伦斯出版集团的程序员开发,用于管理旗下多个新闻网站的内容。在快速迭代的开发过程中,逐渐形成了一套功能强大且高效的 Web 开发框架。2005 年,Django 正式开源,凭借其出色的设计理念和丰富的功能,迅速在 Web 开发领域崭露头角,吸引了大量开发者的关注和使用。随着时间的推移,Django 不断更新迭代,功能愈发完善,社区也日益壮大,成为了 Python 生态系统中最受欢迎的 Web 框架之一。

核心特性

  1. 强大的内置功能:Django 拥有丰富的内置组件,如用户认证、数据库管理、表单处理、缓存机制等。这些内置功能开箱即用,大大减少了开发者的重复劳动,提高了开发效率。例如,在用户认证方面,Django 提供了完整的用户注册、登录、密码重置等功能,开发者只需简单配置即可使用。

  1. 高效的 ORM(对象关系映射):Django 的 ORM 允许开发者使用 Python 代码与数据库进行交互,而无需编写复杂的 SQL 语句。通过定义模型类,Django 可以自动生成数据库表结构,并提供了丰富的查询 API,方便开发者进行数据的增删改查操作。这不仅提高了代码的可读性和可维护性,还使得项目能够轻松切换不同的数据库,如 MySQL、PostgreSQL 等。

  1. 丰富的插件和扩展:Django 拥有庞大的插件生态系统,开发者可以根据项目需求轻松集成各种第三方插件,如 Django - REST - framework 用于构建 RESTful API,Django - Admin - LTE 用于美化管理后台界面等。这些插件丰富了 Django 的功能,进一步加速了项目的开发进程。

架构模式

Django 采用经典的 MVC(Model - View - Controller)架构模式的变体 MTV(Model - Template - View)。在 MTV 模式中,Model 负责与数据库交互,定义数据模型和业务逻辑;Template 负责处理页面的展示逻辑,将数据渲染成 HTML 页面;View 则充当中间层,接收用户请求,调用 Model 获取数据,再将数据传递给 Template 进行展示。这种清晰的职责划分使得代码结构更加清晰,易于维护和扩展。

应用场景

  1. 内容管理系统(CMS):Django 强大的后台管理功能和灵活的数据模型,使其非常适合开发各种类型的内容管理系统。通过 Django 内置的 Admin 管理界面,管理员可以方便地对网站内容进行创建、编辑、删除等操作,如 WordPress、Django CMS 等都是基于 Django 开发的知名内容管理系统。

  1. 电子商务平台:在电子商务领域,Django 的用户认证、订单管理、支付集成等功能可以帮助开发者快速搭建安全可靠的电商平台。例如,一些小型电商企业利用 Django 开发了自己的在线商城,实现了商品展示、购物车管理、在线支付等核心功能。

  1. 数据驱动的 Web 应用:对于需要处理大量数据的 Web 应用,如数据分析平台、企业管理系统等,Django 的 ORM 和高效的数据处理能力能够轻松应对复杂的数据操作需求。开发者可以利用 Django 构建数据可视化界面,方便用户对数据进行分析和决策。

社区与生态

Django 拥有一个活跃且庞大的社区,开发者可以在社区中获取丰富的学习资源、技术文档和开源项目。社区还定期举办各种技术交流活动和研讨会,促进开发者之间的经验分享和技术创新。此外,Django 的生态系统也非常完善,除了丰富的插件和扩展外,还有许多基于 Django 的开发工具和框架,如 Django - Rest - Framework、Django - Channels 等,进一步拓展了 Django 的应用场景和功能。

重要模块展示

分页实现

基于ant-design框架的a-table的分页插件。

// 分页变量

  const data = reactive({
    dataList: [],
    loading: false,
    keyword: '',
    selectedRowKeys: [] as any[],
    pageSize: 10,
    page: 1,
  });
  
// 分页插件
:pagination="{
          size: 'default',
          current: data.page,
          pageSize: data.pageSize,
          onChange: (current) => (data.page = current),
          showSizeChanger: false,
          showTotal: (total) => `共${total}条数据`,
        }"

请求工具实现

前端的请求工具是基于axios开发的,位于utils的http文件夹中。封装了request请求和拦截器。

const service: AxiosInstance = axios.create({
  // baseURL: import.meta.env.BASE_URL + '',
  baseURL: BASE_URL + '',
  timeout: 15000,
});

// axios实例拦截请求
service.interceptors.request.use(
  (config: InternalAxiosRequestConfig) => {
    config.headers.ADMINTOKEN = localStorage.getItem(ADMIN_USER_TOKEN);
    config.headers.TOKEN = localStorage.getItem(USER_TOKEN);

    return config;
  },
  (error: AxiosError) => {
    return Promise.reject(error);
  },
);

// axios实例拦截响应
service.interceptors.response.use(
  (response: AxiosResponse) => {
    if (response.status == 200) {
      if (response.data.code == 0 || response.data.code == 200) {
        return response;
      } else {
        return Promise.reject(response.data);
      }
    } else {
      return Promise.reject(response.data);
    }
  },
  // 请求失败
  (error: any) => {
    console.log(error.response.status);
    if (error.response.status == 404) {
      // todo
    } else if (error.response.status == 403) {
      // todo
    }
    return Promise.reject(error);
  },
);

权限控制模块

权限控制使用了BaseAuthentication实现的,具体代码可参考authentication.py

from rest_framework import exceptions
from rest_framework.authentication import BaseAuthentication
from myapp.models import User

# 接口认证
class AdminTokenAuthtication(BaseAuthentication):
    def authenticate(self, request):
        adminToken = request.META.get("HTTP_ADMINTOKEN")

        print("检查adminToken==>" + adminToken)
        users = User.objects.filter(admin_token=adminToken)
        """
        判定条件:
            1. 传了adminToken 
            2. 查到了该帐号 
            3. 该帐号是管理员或演示帐号
        """
        if not adminToken or len(users) == 0 or users[0].role == '2':
            raise exceptions.AuthenticationFailed("AUTH_FAIL_END")
        else:
            print('adminToken验证通过')

路由模块实现

前端的路由是基于vue-router框架实现的,路由文件位于src的rooter的root.js文件中。预览如下:

  {
    path: '/admin',
    name: 'admin',
    redirect: '/admin/thing',
    component: () => import('/@/views/admin/main.vue'),
    children: [
      { path: 'overview', name: 'overview', component: () => import('/@/views/admin/overview.vue') },
      { path: 'order', name: 'order', component: () => import('/@/views/admin/order.vue') },
      { path: 'thing', name: 'thing', component: () => import('/@/views/admin/thing.vue') },
      { path: 'comment', name: 'comment', component: () => import('/@/views/admin/comment.vue') },
      { path: 'user', name: 'user', component: () => import('/@/views/admin/user.vue') },
      { path: 'classification', name: 'classification', component: () => import('/@/views/admin/classification.vue') },
      { path: 'ad', name: 'ad', component: () => import('/@/views/admin/ad.vue') },
      { path: 'notice', name: 'notice', component: () => import('/@/views/admin/notice.vue') },
      { path: 'loginLog', name: 'loginLog', component: () => import('/@/views/admin/login-log.vue') },
      { path: 'opLog', name: 'opLog', component: () => import('/@/views/admin/op-log.vue') },
      { path: 'errorLog', name: 'errorLog', component: () => import('/@/views/admin/error-log.vue') },
      { path: 'sysInfo', name: 'sysInfo', component: () => import('/@/views/admin/sys-info.vue') },
    ]
  },

 开源代码


百度网盘:链接:https://pan.baidu.com/s/1C7ObZZbVGpRO3gf7Vhdx5A?pwd=k19z
提取码:k19z

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值