基于深度学习的手语识别与翻译系统的设计与实现

目录

 一、研究背景及意义

 二、需求分析

 三、系统设计

1. 数据采集模块

2. 数据处理模块

3. 深度学习模型

4. 翻译引擎模块

5. 用户界面模块

6. 反馈模块

流程图​编辑 四、系统实现

五、实验结果

 六、总结


 一、研究背景及意义

手语是聋哑人士的主要交流方式,但由于手语的复杂性和多样性,普通人往往难以理解。这种交流障碍导致聋哑人士在日常生活中面临诸多困难,如教育、就业和社会融入等方面。传统的翻译方法依赖于专业手语翻译人员,但这种方式成本高、效率低,且难以满足实时交流的需求。随着深度学习技术的快速发展,计算机视觉和自然语言处理领域取得了显著进展。基于深度学习的手语识别与翻译系统可以通过捕捉和分析手语动作,将其转换为文字或语音,从而实现聋哑人士与普通人之间的无障碍交流。帮助聋哑人士更好地融入社会,提升他们的生活质量。促进聋哑人士与普通人之间的交流,减少社会隔阂。

 二、需求分析

1. 用户需求:
   聋哑人士希望通过手语与普通人进行实时交流。
   普通人希望能够理解手语表达的内容。
   系统需要支持多种手语语言和方言。

2. 系统需求:
   系统需要能够实时捕捉和识别手语动作。
   系统需要具备高效的深度学习模型来分析和翻译手语。
   系统需要具备良好的可扩展性和实时性。

 三、系统设计

系统分为以下核心模块:

1. 数据采集模块

功能:通过摄像头或传感器捕捉手语动作。

输入:摄像头或传感器的实时视频流。

输出:原始手语动作数据。

2. 数据处理模块

功能:清洗数据、处理缺失值、标准化数据。

输入:原始手语动作数据。

输出:处理后的手语动作数据。

3. 深度学习模型

功能:使用深度学习模型(如CNN、LSTM或Transformer)识别手语动作。

输入:处理后的手语动作数据。

输出:手语动作识别结果。

4. 翻译引擎模块

功能:根据模型输出生成手语翻译结果。

输入:模型输出。

输出:手语翻译结果。

5. 用户界面模块

功能:提供用户交互界面,展示翻译结果。

输入:翻译结果。

输出:用户界面展示。

6. 反馈模块

功能:收集用户反馈,用于优化模型。

输入:用户反馈。

输出:优化后的模型。

流程图


 四、系统实现

1. 数据采集模块

2. 数据处理模块

3. 深度学习模型

4. 翻译引擎

五、实验结果

1. 实验设置
数据集:使用公开的手语数据集(如ASL Finger Spelling Dataset)。
评估指标:准确率(Accuracy)、F1分数(F1-score)。

2. 实验结果
实验结果如图所示,对比了不同模型的性能。


CNN模型在准确率和F1分数上表现最佳。
实验结果表明,系统能够有效地识别和翻译手语动作。

 六、总结

基于深度学习的手语识别与翻译系统通过捕捉和识别手语动作,能够实时将其转换为文字或语音,帮助聋哑人士与普通人进行无障碍交流。实验结果表明,该系统在准确率和F1分数上表现出色,具有广泛的应用前景。未来可以通过模型优化和数据增强进一步提升系统性能。

开源代码

链接: https://pan.baidu.com/s/1-3maTK6vTHw-v_HZ8swqpw?pwd=yi4b 
提取码: yi4b 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值