目录
一、研究背景及意义
手语是聋哑人士的主要交流方式,但由于手语的复杂性和多样性,普通人往往难以理解。这种交流障碍导致聋哑人士在日常生活中面临诸多困难,如教育、就业和社会融入等方面。传统的翻译方法依赖于专业手语翻译人员,但这种方式成本高、效率低,且难以满足实时交流的需求。随着深度学习技术的快速发展,计算机视觉和自然语言处理领域取得了显著进展。基于深度学习的手语识别与翻译系统可以通过捕捉和分析手语动作,将其转换为文字或语音,从而实现聋哑人士与普通人之间的无障碍交流。帮助聋哑人士更好地融入社会,提升他们的生活质量。促进聋哑人士与普通人之间的交流,减少社会隔阂。
二、需求分析
1. 用户需求:
聋哑人士希望通过手语与普通人进行实时交流。
普通人希望能够理解手语表达的内容。
系统需要支持多种手语语言和方言。
2. 系统需求:
系统需要能够实时捕捉和识别手语动作。
系统需要具备高效的深度学习模型来分析和翻译手语。
系统需要具备良好的可扩展性和实时性。
三、系统设计
系统分为以下核心模块:
1. 数据采集模块
功能:通过摄像头或传感器捕捉手语动作。
输入:摄像头或传感器的实时视频流。
输出:原始手语动作数据。
2. 数据处理模块
功能:清洗数据、处理缺失值、标准化数据。
输入:原始手语动作数据。
输出:处理后的手语动作数据。
3. 深度学习模型
功能:使用深度学习模型(如CNN、LSTM或Transformer)识别手语动作。
输入:处理后的手语动作数据。
输出:手语动作识别结果。
4. 翻译引擎模块
功能:根据模型输出生成手语翻译结果。
输入:模型输出。
输出:手语翻译结果。
5. 用户界面模块
功能:提供用户交互界面,展示翻译结果。
输入:翻译结果。
输出:用户界面展示。
6. 反馈模块
功能:收集用户反馈,用于优化模型。
输入:用户反馈。
输出:优化后的模型。
流程图
四、系统实现
1. 数据采集模块
2. 数据处理模块
3. 深度学习模型
4. 翻译引擎
五、实验结果
1. 实验设置
数据集:使用公开的手语数据集(如ASL Finger Spelling Dataset)。
评估指标:准确率(Accuracy)、F1分数(F1-score)。
2. 实验结果
实验结果如图所示,对比了不同模型的性能。
CNN模型在准确率和F1分数上表现最佳。
实验结果表明,系统能够有效地识别和翻译手语动作。
六、总结
基于深度学习的手语识别与翻译系统通过捕捉和识别手语动作,能够实时将其转换为文字或语音,帮助聋哑人士与普通人进行无障碍交流。实验结果表明,该系统在准确率和F1分数上表现出色,具有广泛的应用前景。未来可以通过模型优化和数据增强进一步提升系统性能。
开源代码
链接: https://pan.baidu.com/s/1-3maTK6vTHw-v_HZ8swqpw?pwd=yi4b
提取码: yi4b