多事之秋(二)

36 篇文章 0 订阅
27 篇文章 0 订阅

在这里插入图片描述

3.2时延和多普勒效应的解

A.时延的解

假设零多普勒切片的模糊函数,令 f d = 0. f_d=0. fd=0.同时假定在实际应用中,位宽是远远大于被目标的时延,也就是 τ ≪ T . {\tau}{\ll}T. τT.因此,当 0 ≤ τ ≤ T 0{\leq}{\tau}{\leq}T 0τT时,且 i = 0. i=0. i=0.利用上述这些假设,则等式(12)可以划为如下形式

X ( τ , 0 ) = r e c t ( τ T ) { ∑ l = 1 N ( T − τ ) e j π ( p l q l 2 T + μ ( 2 l − 1 ) T ) τ s i n c ( μ τ ( T − τ ) ) + ∑ l = 1 N − 1 [ τ e j π ( p l + 1 q l + 1 + p l q l 4 T τ + 2 μ l T τ + p l + 1 q l + 1 − p l q l 2 l + p l − p l + 1 2 ) ⋅ s i n c ( τ ( μ τ + p l + 1 q l + 1 + p l q l 4 T ) ) ] } ( 16 ) {\Chi}({\tau},0)=rect\big({\frac{\tau}{T}}\big){\Bigg\{{\sum\limits_{l=1}^{N}}(T-{\tau})e^{j{\pi}(\frac{p_lq_l}{2T}+{\mu}(2l-1)T){\tau}}sinc({\mu}{\tau}(T-{\tau}))+{\sum\limits_{l=1}^{N-1}\Bigg[{\tau}e^{j{\pi}({\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}}{\tau}+2{\mu}lT{\tau}+{\frac{ p_{l+1}q_{l+1}-p_lq_l}{2}}l+{\frac{p_l-p_{l+1}}{2}})}{\cdot}sinc\big({\tau}({\mu}{\tau}+{\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}})\big)}\Bigg]}{\Bigg\}}{\qquad}(16) X(τ,0)=rect(Tτ){l=1N(Tτ)ejπ(2Tplql+μ(2l1)T)τsinc(μτ(Tτ))+l=1N1[τejπ(4Tpl+1ql+1+plqlτ+2μlTτ+2pl+1ql+1plqll+2plpl+1)sinc(τ(μτ+4Tpl+1ql+1+plql))]}(16)

在等式(16)中, r e c t ( τ T ) rect({\frac{\tau}{T}}) rect(Tτ)仅仅有限的有效范围内可以被忽略。因为 τ ≪ T . {\tau}{\ll}T. τT.,所以第二项求和式可以直接忽略,同时 T − τ = T ( 1 − τ T ) ≈ T . T-{\tau}=T\big(1-{\frac{\tau}{T}}\big){\approx}T. Tτ=T(1Tτ)T.因此

X ( τ , 0 ) ≈ T s i n c ( μ T τ ) e j π ( f r a c p l q l 2 ( 2 l − 1 ) B T + 1 ) μ ( 2 l − 1 ) T τ ( 17 ) {\Chi}({\tau},0){\approx}Tsinc({\mu}T{\tau})e^{j{\pi}(frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T {\tau}}{\qquad}(17) X(τ,0)Tsinc(μTτ)ejπ(fracplql2(2l1)BT+1)μ(2l1)Tτ(17)

如果 B T ≫ 1 BT{\gg}1 BT1,那么等式(17)两边可以同时去绝对值,

∣ X ( τ , 0 ) ∣ ≈ ∣ T s i n c ( μ T τ ) e j π ( p l q l 2 ( 2 l − 1 ) B T + 1 ) μ ( 2 l − 1 ) T τ ∣ = ∣ N T s i n c ( μ N T τ ) ∣ ( 18 ) |{\Chi}({\tau},0)|{\approx}\big|Tsinc({\mu}T{\tau})e^{j{\pi}(\frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T{\tau}}\big|=|NTsinc({\mu}NT{\tau})|{\qquad}(18) X(τ,0)Tsinc(μTτ)ejπ(2(2l1)BTplql+1)μ(2l1)Tτ=NTsinc(μNTτ)(18)

在这种情况下,时延的解就是 1 μ N T {\frac{1}{{\mu}NT}} μNT1,即距离分辨率为 c 2 μ N T {\frac{c}{2{\mu}NT}} 2μNTc



{\Chi}({\tau},0)=rect\big({\frac{\tau}{T}}\big)
{\Bigg\{{\sum\limits_{l=1}^{N}}(T-{\tau})e^{j{\pi}(\frac{p_lq_l}{2T}+{\mu}(2l-1)T){\tau}}
sinc({\mu}{\tau}(T-{\tau}))\Bigg\}}
+{\sum\limits_{l=1}^{N-1}\Bigg[{\tau}e^{j{\pi}({\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}}{\tau}+2{\mu}lT{\tau}
+{\frac{p_{l+1}q_{l+1}-p_lq_l}{2}}l+{\frac{p_l-p_{l+1}}{2}}){\cdot}sinc\big({\tau}({\mu}{\tau}+{\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}})\big)}\Bigg]}{\qquad}(16)



{\Chi}({\tau},0)
{\approx}
Tsinc({\mu}T{\tau})e^{j{\pi}(frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T
{\tau}}{\qquad}(17)

|{\Chi}({\tau},0)|
{\approx}
\big|Tsinc({\mu}T{\tau})e^{j{\pi}(frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T{\tau}}\big|
=|NTsinc({\mu}NT{\tau})|{\qquad}(18)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值