PointNet++学习

在这里插入图片描述

我的任务:目标检测
在这里插入图片描述

在这里插入图片描述
无序性就带来了置换不变性:
在这里插入图片描述

前置学习

基础blog

PyTorch实现MLP的两种方法nn.Linear和nn.Conv1d
在这里插入图片描述

以前用了三种方式来处理点云:

在这里插入图片描述

FPS——最远点采样

在这里插入图片描述

PointNet原理

作者考虑到了:无序性 & 几何变换对分类无影响 & 无序输入
在这里插入图片描述

PointNet 物体分类时的网络结构

在这里插入图片描述
T-net张什么样
在这里插入图片描述

上面有两个transform,就感觉是角度的转换,旋转到某一个角度的时候,就容易看得清。
他最后得到了一个global feature这么一个东西,相当于有了总体认识。
然后就可以识别一下这个东西是什么玩意。

PointNet 物体分割时的网络结构

在这里插入图片描述
分隔任务就是要对点进行分类,我需要将点归到某一个类当中。
点 + 全局信息 => 能够进行判断当前点属于 飞机翅膀? 飞机机头?

鲁棒性

在这里插入图片描述
在这里插入图片描述
鲁棒性可解释性:
在这里插入图片描述
他这个maxpool 得到的是 global feature.
其实就是 critical points.
在这里插入图片描述

为什么要选择PointNet

在这里插入图片描述

PointNet++

3D CNN 获取全局信息

在这里插入图片描述

PointNet++的原理

简明:局部多次使用PointNet
它可以做到:

  • 多尺度的特征学习
  • 旋转不变性
  • 置换不变性
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述
怎么选择区域呢?

  • K 近邻
  • Ball query

怎么选的点呢?
两种方法:

  • 平均采样
  • 最远采样
    在这里插入图片描述

在这里插入图片描述
上面用到了插值,有什么实现的方式呢?
在这里插入图片描述
激光雷达扫描到的图像有近密远疏的特性。
那么我们在采样的时候,采样的半径需要进行考虑,密集区域圈小点,稀疏区域圈大点。

PointNet++ 的鲁棒性提升

在这里插入图片描述
Solution:
在这里插入图片描述
用完这两种方法之后,鲁棒性直接提升
在这里插入图片描述

跑通PointNet++

在这里插入图片描述

PointNet++的代码解读

  1. PointNet跑通
  2. 声呐、双目、RGB数据转换成 -> 3D
  3. 点云的标注软件, 是否能直接检测出来鱼

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值