解这道考研题要用克莱默法则的公式吗?

我们来看一道1996年数学三的一道填空题. 虽然是二十多年前的题目,但是非常有意思.

题目

A = [ 1 1 ⋯ 1 a 1 a 2 ⋯ a n a 1 2 a 2 2 ⋯ a n 2 ⋮ ⋮ ⋯ ⋮ a 1 n − 1 a 2 n − 1 ⋯ a n n − 1 ] , x = [ x 1 x 2 ⋮ x n ] , B = [ 1 1 ⋮ 1 ] , A=\begin{bmatrix}1&1&\cdots&1\\a_1&a_2&\cdots&a_n\\a_1^2&a_2^2&\cdots&a_n^2\\\vdots&\vdots&\cdots&\vdots\\a_1^{n-1}&a_2^{n-1}&\cdots&a_n^{n-1}\end{bmatrix},x=\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix},B=\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}, A=1a1a12a1n11a2a22a2n11anan2ann1,x=x1x2xn,B=111,

其中 a i ≠ a j ( i ≠ j , i , j = 1 , 2 , ⋯   , n ) a_i\neq a_j(i\neq j,i,j=1,2,\cdots,n) ai̸=aj(i̸=j,i,j=1,2,,n),则线性方程组 A T x = B A^Tx=B ATx=B的解是( \quad

聪明的读者不妨先自己思考一下解法,再往下看!

常规解法

解: 设系数行列式为 D D D, D j D_j Dj是将 D D D中第 j j j列换成常数列 B B B后得到的行列式. 由题目条件及范德蒙行列式知, ∣ D ∣ ≠ 0 |D|\neq 0 D̸=0, 再由克莱默法则,该方程组有唯一解, 且

x 1 = D 1 D = D D = 1 , x j = D j D = 0 D = 0 ( j ≠ 1 ) . x_1=\frac{D_1}{D}=\frac{D}{D}=1,x_j=\frac{D_j}{D}=\frac{0}{D}=0(j\neq 1). x1=DD1=DD=1,xj=DDj=D0=0(j̸=1).

所以,

x = [ 1 0 ⋮ 0 ] . x=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}. x=100.

出题者的意图是考察克莱默法则、范德蒙行列式. 由于是一道填空题,若用常规方法思考,势必时间成本比较高;如果同学们对这些知识点不是烂熟于心,还有可能被卡住算不出来!

巧妙的解法

解:原方程组 A T x = B A^Tx=B ATx=B就是下面的方程组:

[ 1 a 1 a 1 2 ⋯ a 1 n − 1 1 a 2 a 2 2 ⋯ a 2 n − 1 ⋮ ⋮ ⋮ ⋯ ⋮ 1 a n a n 2 ⋯ a n n − 1 ] x = [ 1 1 ⋮ 1 ] ( 1 ) \begin{bmatrix}1&a_1&a_1^2&\cdots & a_1^{n-1}\\ 1& a_2& a_2^2& \cdots&a_2^{n-1}\\ \vdots&\vdots&\vdots&\cdots&\vdots\\ 1&a_n&a_n^2&\cdots&a_n^{n-1}\end{bmatrix}x=\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}\quad \quad(1) 111a1a2ana12a22an2a1n1a2n1ann1x=111(1)

根据矩阵 A A A乘以列向量的下列解释:

A [ x 1 x 2 ⋮ x n ] = x 1 c o l 1 + x 2 c o l 2 + ⋯ + x n c o l n . \quad A\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}=x_1col_1+x_2col_2+\cdots+x_ncol_n. Ax1x2xn=x1col1+x2col2++xncoln.

上面的方程组(1)就是问右边的列向量如何被左边的矩阵的列向量组表出?

想到这一点,马上知道:

x = [ 1 0 ⋮ 0 ] , x=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}, x=100

再用范德蒙行列式,知系数行列式不等于0,由克莱默法则方程组有唯一解,所以答案就出来了!

总结

  1. 记住下面的高级观点:

A [ x 1 x 2 ⋮ x n ] = x 1 c o l 1 + x 2 c o l 2 + ⋯ + x n c o l n . \quad A\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}=x_1col_1+x_2col_2+\cdots+x_ncol_n. Ax1x2xn=x1col1+x2col2++xncoln.

  1. 用线性表出来解释线性方程组.

更多内容,欢迎用微信扫描下图中的二维码,或搜索“大哉数学之为用”,免费关注微信公众号“大哉数学之为用”进行阅读。
在这里插入图片描述
如果您觉得本文对您有帮助,欢迎赞赏!您的支持是作者继续下去的动力!在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值