介绍
您是否曾经尝试过使用人工智能(AI)来识别照片中的物品?如果是,那么您可能已经接触过一些目前较为常用的图像识别的技术,例如Mask R-CNN等实例分割模型(Instance Segmentation)。
Mask R-CNN是一个可以提供像素级(per-pixel)物体轮廓显示与分类的深度学习(Deep Learning)模型;它被广泛应用于不同领域,使各行各业都能从人工智能的发展创新中受益。实例包括从医学图像中分辨出病变部分、从检查图像中识别出材料缺陷与测量其相应大小、以及卫星图像或航拍图像分析等。
MaskRCNN应用实例
Datature平台
Datature致力于简化与普及神经网络模型(Neural Network Models)的使用,以在图形用户界面中拖曳及放下(Drag-and-drop)的形式取代繁复的代码,让不会写程序的用户也能轻松地训练出客制化的神经网络模型,支持复杂多样的应用需求。另外,Datature的平台使用了强大的迁移学习(Transfer Learning)技术,使神经网络学习的时间大幅减少。
我们的平台一方面支持程序员以最快速度实施模型,另一方面大大降低非技术人员的入门门槛。以Mask R-CNN模型为例:通常情况下训练一个较大型的Mask R-CNN模型需要多个绘图处理器(GPU)共同完成,然而合理的调配GPU运算资源是一件相当复杂的事情。程序员不但需要具备有关的专业技术知识,编码所需时间亦长。Datature的平台具有自动协调GPU的功能,用户亦能根据模型的复杂程度,选用不同等级的GPU。我们的用户完全不用担心任何的硬体问题,甚至连不会写程序也完全无碍。
在Datature的平台上训练一个自定义的模型
下方视频将展示如何在Datature的平台上训练一个以Mask R