基于自定义数据的实例分割模型训练

本文介绍了如何在Datature平台上利用Mask R-CNN进行实例分割模型的训练。Datature简化了神经网络模型的使用,支持数据上传、标注、模型训练和部署,尤其适合非程序员。通过平台的拖放界面,用户可以创建训练流程,监控训练进度,并在训练完成后在Portal中可视化模型效果。此外,平台还支持多GPU训练和模型部署。
摘要由CSDN通过智能技术生成

介绍

您是否曾经尝试过使用人工智能(AI)来识别照片中的物品?如果是,那么您可能已经接触过一些目前较为常用的图像识别的技术,例如Mask R-CNN等实例分割模型(Instance Segmentation)。

Mask R-CNN是一个可以提供像素级(per-pixel)物体轮廓显示与分类的深度学习(Deep Learning)模型;它被广泛应用于不同领域,使各行各业都能从人工智能的发展创新中受益。实例包括从医学图像中分辨出病变部分、从检查图像中识别出材料缺陷与测量其相应大小、以及卫星图像或航拍图像分析等。

MaskRCNN应用实例

Datature平台

Datature致力于简化与普及神经网络模型(Neural Network Models)的使用,以在图形用户界面中拖曳及放下(Drag-and-drop)的形式取代繁复的代码,让不会写程序的用户也能轻松地训练出客制化的神经网络模型,支持复杂多样的应用需求。另外,Datature的平台使用了强大的迁移学习(Transfer Learning)技术,使神经网络学习的时间大幅减少。

我们的平台一方面支持程序员以最快速度实施模型,另一方面大大降低非技术人员的入门门槛。以Mask R-CNN模型为例:通常情况下训练一个较大型的Mask R-CNN模型需要多个绘图处理器(GPU)共同完成,然而合理的调配GPU运算资源是一件相当复杂的事情。程序员不但需要具备有关的专业技术知识,编码所需时间亦长。Datature的平台具有自动协调GPU的功能,用户亦能根据模型的复杂程度,选用不同等级的GPU。我们的用户完全不用担心任何的硬体问题,甚至连不会写程序也完全无碍。

在Datature的平台上训练一个自定义的模型

下方视频将展示如何在Datature的平台上训练一个以Mask R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值