手把手教你训练自己的Mask R-CNN图像实例分割模型(PyTorch官方教程)

近来在学习图像分割的相关算法,准备试试看Mask R-CNN的效果。

关于Mask R-CNN的详细理论说明,可以参见原作论文https://arxiv.org/abs/1703.06870,网上也有大量解读的文章。本篇博客主要是参考了PyTorch官方给出的训练教程,将如何在自己的数据集上训练Mask R-CNN模型的过程记录下来,希望能为感兴趣的读者提供一些帮助。

PyTorch官方教程(Object Detection finetuning tutorial):

https://github.com/pytorch/tutorials/blob/master/_static/torchvision_finetuning_instance_segmentation.ipynb

或:

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

需要注意的是,TorchVision需要0.3之后的版本才可以使用。

目录

准备工作

数据集

定义模型

训练模型

1. 准备工作

2. 数据增强/转换

3. 训练

测试模型


 

准备工作

安装coco的api,主要用到其中的IOU计算的库来评价模型的性能。

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

API的安装也可以参考另一篇:

https://blog.csdn.net/u013685264/article/details/100331064

数据集

本教程使用Penn-Fudan的行人检测和分割数据集来训练Mask R-CNN实例分割模型。Penn-Fudan数据集中有170张图像,包含345个行人的实例。图像中场景主要是校园和城市街景,每张图中至少有一个行人,具体的介绍和下载地址如下:

https://www.cis.upenn.edu/~jshi/ped_html/

# 下载Penn-Fudan dataset
wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip
# 解压到当前目录
unzip PennFudanPed.zip

解压后的目录结构如下:

先看看Penn-Fudan数据集中的图像和mask:

from PIL import Image

Image.open('PennFudanPed/PNGImages/FudanPed00001.png')

mask = Image.open('PennFudanPed/PedMasks/FudanPed00001_mask.png')

mask.putpalette([
    0, 0, 0, # black background
    255, 0, 0, # index 1 is red
    255, 255, 0, # index 2 is yellow
    255, 153, 0, # index 3 is orange
])

mask

    

每一张图像都有对应的mask标注,不同的颜色表示不同的实例。在训练模型之前,需要写好数据集的载入接口。

import os
import torch
import numpy as np
import torch.utils.data
from PIL import Image


class PennFudanDataset(torch.utils.data.Dataset):
    def __init__(self, root, transforms=None):
        self.root = root
        self.transforms = transforms
        # load all image files, sorting them to ensure that they are aligned
        self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
        self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

    def __getitem__(self, idx):
        # load images ad masks
        img_path = os.path.join(self.root, "
Mask R-CNN是一种基于深度学习的目标检测算法,它不仅能够识别图像中物体的位置(即边界框),还能进一步提供每个目标的像素级精确分割掩码。这使得Mask R-CNN成为一种强大的工具,在需要同时完成分类、定位以及实例分割的任务上非常有用。 当你使用PyTorch框架实施Mask R-CNN时,通常会经历以下几个步骤: 1. **环境配置**:首先你需要安装好Python解释器,并通过pip或者其他包管理工具如conda来设置必要的依赖库,比如最新版本的PyTorch及其对应的CUDA扩展等; 2. **数据准备**:接下来是要准备好训练用的数据集,包括但不限于标注文件(.json),图片存储路径等等。对于具体的任务场景来说,可能还需要对原始数据做一些预处理工作,例如裁剪、翻转、缩放变换等; 3. **模型构建与加载预训练权重**:然后你可以根据官方提供的maskrcnn_benchmark或其他开源实现创建网络结构并初始化参数。很多时候我们会先下载由他人已经训练好的通用权重作为起点(transfer learning),以便于加速收敛过程并且提高最终效果; 4. **自定义损失函数及优化策略的选择**:针对特定的应用领域调整一些超参设定也很关键,比如learning rate scheduler的学习率衰减规则或者采用何种类型的正则化项等都会影响到结果的好坏程度; 5. **评估指标的设计**:最后就是利用测试样本验证模型性能了,一般常用IoU (Intersection over Union) 和mAP(mean Average Precision @ different IoUs)这样的度量标准来进行定量分析比较。 总之,在PyTorch环境下操作Mask R-CNN可以让你更方便快捷地搭建出一套完整的实例分割系统,并且借助GPU硬件加速的支持能极大地缩短实验周期,提升研发效率。
评论 262
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值