手把手教你训练自己的Mask R-CNN图像实例分割模型(PyTorch官方教程)

近来在学习图像分割的相关算法,准备试试看Mask R-CNN的效果。

关于Mask R-CNN的详细理论说明,可以参见原作论文https://arxiv.org/abs/1703.06870,网上也有大量解读的文章。本篇博客主要是参考了PyTorch官方给出的训练教程,将如何在自己的数据集上训练Mask R-CNN模型的过程记录下来,希望能为感兴趣的读者提供一些帮助。

PyTorch官方教程(Object Detection finetuning tutorial):

https://github.com/pytorch/tutorials/blob/master/_static/torchvision_finetuning_instance_segmentation.ipynb

或:

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

需要注意的是,TorchVision需要0.3之后的版本才可以使用。

目录

准备工作

数据集

定义模型

训练模型

1. 准备工作

2. 数据增强/转换

3. 训练

测试模型


 

准备工作

安装coco的api,主要用到其中的IOU计算的库来评价模型的性能。

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

API的安装也可以参考另一篇:

https://blog.csdn.net/u013685264/article/details/100331064

数据集

本教程使用Penn-Fudan的行人检测和分割数据集来训练Mask R-CNN实例分割模型。Penn-Fudan数据集中有170张图像,包含345个行人的实例。图像中场景主要是校园和城市街景,每张图中至少有一个行人,具体的介绍和下载地址如下:

https://www.cis.upenn.edu/~jshi/ped_html/

# 下载Penn-Fudan dataset
wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip
# 解压到当前目录
unzip PennFudanPed.zip

解压后的目录结构如下:

先看看Penn-Fudan数据集中的图像和mask:

from PIL import Image

Image.open('PennFudanPed/PNGImages/FudanPed00001.png')

mask = Image.open('PennFudanPed/PedMasks/FudanPed00001_mask.png')

mask.putpalette([
    0, 0, 0, # black background
    255, 0, 0, # index 1 is red
    255, 255, 0, # index 2 is yellow
    255, 153, 0, # index 3 is orange
])

mask

    

每一张图像都有对应的mask标注,不同的颜色表示不同的实例。在训练模型之前,需要写好数据集的载入接口。

import os
import torch
import numpy as np
import torch.utils.data
from PIL import Image


class PennFudanDataset(torch.utils.data.Dataset):
    def __init__(self, root, transforms=None):
        self.root = root
        self.transforms = transforms
        # load all image files, sorting them to ensure that they are aligned
        self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
        self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

    def __getitem__(self, idx):
        # load images ad masks
        img_path = os.path.join(self.root, "
### 回答1: 可以通过使用maskrcnn模型来实现实例分割和特征提取,具体步骤为:1.使用卷积神经网络构建模型;2.输入图像模型中;3.在进行实例分割和特征提取之前,先对图像进行预处理;4.使用maskrcnn模型进行实例分割和特征提取;5.最后进行后处理,使用提取的特征来进行分类。 ### 回答2: Mask R-CNN是一种强大的深度学习模型,可以同时进行目标检测、实例分割和特征提取。下面将介绍如何使用Mask R-CNN模型进行实例分割和特征提取。 首先,我们需要准备训练数据。训练数据应该包含标注图像和对应的目标实例的掩码。掩码是一个二值图像,其中目标实例被标记为前景,背景被标记为背景。有了这些标注数据,我们就可以开始训练Mask R-CNN模型。 在模型训练过程中,我们可以使用预训练的ImageNet权重来初始化Mask R-CNN模型的骨干网络部分,例如ResNet等。这样可以加快模型的收敛速度,并提高性能。 训练完成后,我们可以用Mask R-CNN模型进行实例分割和特征提取。对于实例分割,我们将输入图像传入模型模型会为每个检测到的目标实例生成一个二值掩码,用于标记目标实例的像素。通过这些掩码,我们可以精确地提取出目标实例的位置和形状。 对于特征提取,我们可以使用Mask R-CNN模型的卷积特征图。这些特征图包含了图像的高级语义信息。可以通过将图像输入模型,提取出对应的特征图,并使用这些特征图进行其他任务,如图像分类、目标识别等。 总之,利用Mask R-CNN模型进行实例分割和特征提取的步骤包括准备训练数据,训练模型,然后可以使用模型进行实例分割和特征提取。这样的模型在计算机视觉任务中具有广泛的应用,可以帮助我们更好地理解图像中的目标实例和图像的语义内容。 ### 回答3: Mask R-CNN是一种用于实例分割和特征提取的深度学习模型。下面是如何使用Mask R-CNN进行实例分割和特征提取的步骤: 1.准备数据集:收集具有实例标注图像数据集,并进行标注。每个实例都需要以边界框和对应的掩码表示。 2.搭建模型:使用深度学习框架(如TensorFlow或PyTorch)搭建Mask R-CNN模型。该模型由两个主要部分组成:区域建议网络(RPN)和实例分割网络。RPN用于生成候选区域,而实例分割网络用于对这些区域进行分类、边界框回归和像素级分割。 3.训练模型:使用准备好的数据集对Mask R-CNN模型进行训练训练的目标是最小化分类误差、边界框回归误差和像素级分割误差。 4.实例分割:使用训练好的模型对新的图像进行实例分割。首先,使用RPN生成候选区域。然后,通过实例分割网络对每个候选区域进行分类、边界框回归和像素级分割,得到每个实例的掩码。 5.特征提取:除了实例分割外,Mask R-CNN还可以用于特征提取。通过在模型的不同层级提取特征,可以获得丰富的语义和空间信息。这些特征可以用于其他任务,如目标检测、图像理解等。 总结来说,使用Mask R-CNN进行实例分割和特征提取,需要准备数据集、搭建模型训练模型,并在新的图像上进行实例分割和特征提取。这种模型在许多计算机视觉任务中都有广泛的应用。
评论 261
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值