竞赛专题 | 数据预处理-如何处理数据中的坑?

数据预处理在数据竞赛中至关重要,包括错误数据处理、模型依赖的数据变换、特征构建等。专家们分享了处理缺失值、异常值、数据分布调整和文本数据预处理的策略。通过数据清洗、数据集成、数据变换和数据规约,提高数据质量和模型性能。
摘要由CSDN通过智能技术生成

点击上方“Datawhale”,选择“星标”公众号

第一时间获取价值内容

640?

为了帮助更多竞赛选手入门进阶比赛,通过数据竞赛提升理论实践能力和团队协作能力。DataFountain 和 Datawhale 联合邀请了数据挖掘,CV,NLP领域多位竞赛大咖,将从赛题理解、数据探索、数据预处理、特征工程、模型建立与参数调优、模型融合六个方面完整解析数据竞赛知识体系,帮助竞赛选手从0到1入门和进阶竞赛。

下面是大咖分享

???

数据挖掘方向

640?wx_fmt=jpeg

杰少 ID:尘沙杰少

简介:南京大学计算机系毕业,现任趋势科技资深算法工程师。20多次获得国内外数据竞赛奖项,包括KDD2019以及NIPS18 AutoML等。

进行数据预处理依赖的因素有很多,我个人认为数据预处理也可以分很多情况,最常见的可以分为下面三种情况:

 

第一种是最常见的也是都会进行的,错误数据的处理,这种数据很多可以直接通过EDA的方式就能发现,例如统计人的身高时,我们发现有的人的身高是10米,那这种很明显就是错误的数据;还有天池之前的医疗比赛,有些血压数据明显是仪器错误等造成的,而针对这些错误的数据,我们就需要对其进行清洗,删除或者将其当缺失值等;

 

第二种对数据预处理往往是模型的原因,例如我们采用线性类的模型,那么往往需要对类别特征进行特殊的处理,连续的值也往往需要进行简单的Normalize等,方便模型更好的吸收数据;这个在kaggle的Minist比赛中也很常见;如果我们用的是GBDT类的模型,例如LGB等,那么我们可能就需要考虑特征的相对大小等问题,而缺失值我们就不需要进行过多的处理等;

 

第三种是方便特征的构建等,我们需要对数据的结构进行某些变换,例如KDD19年的比赛,我们需要将结构性的文本类数据进行展开,这样不管是提取特征还是其他操作都会方便很多;还有时间序列类的问题,我们往往将数据进行pivot操作,将其展开为一行对应某个用户对应的历史消费等信息。

640?wx_fmt=png

王贺 ID:鱼遇雨欲语与余

简介:武汉大学硕士,2019年腾讯广告算法大赛冠军选手,京东算法工程师,一年内获得两冠四亚一季的佳绩。

数据预处理主要内容包括数据清洗,数据集成,数据变换和数据规约。

 

数据清洗主要删除原始数据中的缺失数据,异常值,重复值,与分析目标无关的数据。

处理缺失数据

处理缺失数据处理缺失数据有三种方法,删除记录,数据插补和不处理。这里主要详细说明缺失值的删除。

删除

处理缺失值要事先知道数据缺失的原因,比如用户调查问卷里的缺失值是因为被调查者回答问题时漏掉了一个问题选项,那么这个缺失值就代表了该用户没有回答该问题,而信用卡激活日期的缺失,不能表明是丢失了信用卡的激活日期,按照系统的计算逻辑来看,凡是还没有激活的信用卡,其激活日期都记为缺失的,即NULL,还有的缺失是因为系统本身的计算错误造成的,比如某个字段除以零,某个负数取对数等错误的数学运算直接删除带有缺失值的某行数据,这种方法删除方法的好处就是删除后得数据都是完整的数据,不存在缺失数据,但是最大的不足之处就是如果缺失数据存在很大的比例,删除后会导致后面用于挖掘的数据过少,不足于进行有效的分析,其次直接删除可能会误删掉重要的信息。直接删除带有大量缺失值的变量,这种方法只针对那些缺失值占比超过20%或更多的变量,另外是否删除要结合其商业应用价值,比如删除信用卡未激活日期的这个变量,这个变量代表该用户属于未激活卡的用户群体,是带有一定商业价值的,那么如果删除会因此得不偿失。

缺失值替换

分类型变量:用众数或者一个新的类别去代替缺失值对于次序型变量和区间型变量而言,用中间值,众数,最大值,最小值,平均值,新定义的其他值来代替缺失值,这样做的好处在于简单直观,有依据,比如用众数代替,众数本身说明该值出现的几率最大。

对缺失值进行赋值

这种方法将通过例如回归模型,决策树模型,贝叶斯定理等去预测缺失值的最近替代值,也就是把缺失数据所对应的变量当做目标变量,把其他的输入变量当做自变量。为每个缺失值赋值的字段分别建立预测模型。从理论上看,该种方法最严谨,但是成本较高。是否采用该方法要与业务背景相结合。

数据转换由于原始数据,在此主要是指区间型变量的分布不光滑(或有噪声),不对称分布,也使得数据转化成为一种必需的技术手段数据转换主要分为以下四大类:

1. 产生新变量

2. 改善数据分布特征,主要针对不对称分布的转换

3. 区间型变量的分箱转换

4. 数据标准化,主要是0,1均值化产生新变量:根据原始数据,通过数学公式推导,产生更加具有商业意义的新变量。

比如对用户的出生年月日进行处理,把当前的年月日减去用户出生年月日,得到一个新的字段’用户年龄’常用的衍生变量有:用户月均,年均消费金额和消费次数家庭人均年收入用户在线交易终止的次数占用户在线交易成功次数的比例用户下单付费的次数占用户下单次数的比例用户在制定商品类目的消费金额占其他全部消费金额的比例。

改善数据分布特征

通过取对数,开平方根,取倒数,开平方,取指数的方法使得不对称分布的数据呈现(或近似)正态分布,并形成倒钟形曲线。

分箱转换

分箱转换就是把区间型变量转换成次序型变量,转换目的如下:降低变量的复杂性

数据预处理数据分析非常重要的一个环节,它可以让原始数据更加适合用于各种分析和建模任务。常见的数据预处理包括数据清洗、缺失值处理、异常值处理特征选择、特征缩放和特征变换等。下面我们将介绍一些常见的数据预处理方法。 1. 数据清洗 数据清洗是指在数据去除不合理、重复或者无效的数据,保证数据的完整性和准确性。常见的数据清洗方法包括: - 删除重复数据 - 去除异常值 - 去除不合理数据 - 填充缺失值 2. 缺失值处理 缺失值是指数据某些数据缺失的情况。常见的缺失值处理方法包括: - 删除缺失值 - 插值法填补缺失值 - 使用平均值、位数、众数等统计量填补缺失值 3. 异常值处理 异常值是指数据不符合正常规律的数据。常见的异常值处理方法包括: - 删除异常值 - 修改异常值 - 使用插值法填补异常值 4. 特征选择 特征选择是指从原始数据选择最具有代表性的特征,以便用于分析和建模。常见的特征选择方法包括: - 过滤式特征选择 - 包裹式特征选择 - 嵌入式特征选择 5. 特征缩放 特征缩放是指将不同量纲的特征缩放到相同的范围内。常见的特征缩放方法包括: - 标准化 - 归一化 - 对数变换 6. 特征变换 特征变换是指通过对原始数据进行某些变换,使得数据更适合用于分析和建模。常见的特征变换方法包括: - 主成分分析(PCA) - 线性判别分析(LDA) - 因子分析 以上就是一些常见的数据预处理方法,通过对数据进行适当的预处理,可以提高数据分析和建模的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值