如何使用DeepSeek进行科研图表绘制?

 Datawhale干货 

整理:Datawhale

有时候我们写论文或者看 blog,看到别人画的很好看的结构图,觉得自己肯定画不了这么好。

但是现在可以让大模型来帮我们结构图。一共需要用到两个工具:大模型、Draw.io。下面的示例会使用 Claude,大家也可以尝试 DeepSeek。

同时,还有一些具有一定复杂性的图表往往需要使用 R 语言进行绘制。这里会用到 DeepSeek 和 RStudio。

DeepSeek官方链接:

https://www.deepseek.com/

画结构图:Claude+Draw.io 

这一部分教程贡献者:宋志学,Datawhale成员。

1. 首先让我们来写一个提示词:

“画一个 bert 的模型结构图,使用 draw.io 格式”

00f062e555b7c9d4696ecf302af59abd.png

2. 复制好模型输出的 draw.io 格式的代码之后,直接将其复制到 draw.io 官网的画图页面,或者本地下载也可以。

draw.io:https://app.diagrams.net/

fb9882cdd0120204bf368d6a21ff800e.png

很惊艳的作图能力,接下来给大家几个好用的画图提示词。

1. 结构对比画图:“画一个【主题A】和【主题B】的结构示意图,左侧为【主题A】右侧为【主题B】,输出为draw.io格式”

“画一个 RAG和GraphRAG的结构对比图,左侧为RAG,右侧为GraphRAG。输出为draw.io格式”

b72f458b7816c5ad15cce3e32d373b31.png

2. 总结分析型:“分析并画一下现有的【主题】框架图,输出为draw.io格式”

“分析并画一下现有的Agent框架图,输出为draw.io格式”

dee15e855dd278ada94cd6ba057dc1e6.png

除了 claude 之外,Qwen-2.5-max 的画图能力也很强,以下是 Qwen-2.5-max 的一个例子。

Qwen-2.5-max:https://chat.qwen.ai/

画一个 RAG 和 GraphRAG 的结构对比图,左侧为 RAG,右侧为 GraphRAG。输出为 draw.io 格式

4c45c450eb13f5463b4a7b3e40874a69.png

画复杂图表:DeepSeek+Rstudio

这一部分感谢 SCIPainter 的介绍和案例,更多的科研制图技巧可以查看

首先选择 DeepSeek-R1 模型,然后输入:

“使用R语言进行 PCA 分析并使用 ggplot2 绘制带有置信区间的 PCA 散点图,范例数据为自带数据集 iris 请给出详细示例代码”

93192ab8bc6a0301fd78326e07c787a1.jpeg

给出的结果如下,这里跳过详细思考过程,直接查看代码块部分。

6dc4617fba3d14d800c8aeb83b3d199b.png

点击以上代码块右上角的“复制”按钮,然后将 DeepSeek 生成的代码复制粘贴到 Rstudio 的脚本编辑器中进行运行,PCA 分析和绘图结果如下图。

f8506541df80230084739f0a95414764.png

在Rstudio中,我们也可以适当调整绘图参数,满意后将绘制好的图表保存到本地。

c256daf6c185c9ff906839771b24a35d.png

祝你使用愉快! 🌈

图片一起“赞”三连

### 使用 DeepSeek 进行数据分析与图表可视化 #### 数据准备 为了利用 DeepSeek 对数据进行分析并生成可视化图表,首先需要准备好待处理的数据集。通常情况下,可以采用 CSV 或 Excel 文件作为输入源。确保文件结构清晰,列名定义明确。 #### 导入必要的库 在 Python 环境下操作时,除了安装有 DeepSeek 外部包之外,还需要导入一些辅助性的科学计算和绘库来增强功能: ```python import pandas as pd from deepseek import visualize, analyze # 假设这是DeepSeek提供的接口函数 ``` #### 加载数据 通过 Pandas 库加载本地存储的数据表格到内存中以便后续加工处理: ```python data = pd.read_csv('path/to/your/dataset.csv') print(data.head()) # 查看前几条记录确认读取无误 ``` #### 执行基础统计分析 调用 `analyze` 方法对整个数据集合执行初步探索性描述统计学运算,获取总体概况了解各个字段分布特征等信息[^1]。 #### 创建不同类型的可视化形 基于内置的支持,可以选择适合表达特定业务逻辑关系的图表样式来进行展示说明工作成果。例如制作柱状对比比较各组间差异;绘制趋势变化曲线反映时间序列上的波动情况;或是构建散点矩阵考察变量间的关联程度等等[^2]。 对于具体的例子来说,在金融领域内经常涉及到股价走势预测研究,则可参照如下方式快速搭建出一张专业的K线组合形态用于技术面分析参考: ```python visualize.candlestick_chart( data[['Open', 'High', 'Low', 'Close']], title="Stock Price Movement" ) ``` 另外如果想要分享研究成果给他人审阅的话,还可以借助自动化报告生成功能一键导出完整的HTML/PDF文档形式保存下来供日后查阅使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值