计算图片的相似程度,皮尔逊相关性与欧式距离

本文介绍了计算图像相似度的两种方法:皮尔逊相关系数和欧式距离。皮尔逊相关系数是通过协方差与标准差的比值来衡量两个变量间的线性相关程度;而欧式距离则通过计算两向量间各元素差的平方和的平方根来确定它们的相似性。这些概念在图像分析和比较中广泛应用。
摘要由CSDN通过智能技术生成

###两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商:
这里写图片描述

上式定义了总体相关系数,常用希腊小写字母p 作为代表符号。估算样本的协方差和标准差,可得到皮尔逊相关系数,常用英文小写字母 r 代表:
这里写图片描述

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 29 14:17:12 2018

@author: Dawn
"""

import numpy as np
from scipy.spatial.distance import pdist
import face_recognition
import cv2

#计算皮尔逊相关度:
def pearson(p,q):
#只计算两者共同有的
#    same = 0
#    for i in p:
#        if i in q:
#            same +=1
#
#    n = same
    #分别求p,q的和
    n = len(p)
    sumx = sum([p[i] for i in range(n)])
    sumy = sum([q[i] for i in range(n)])
    #分别求出p,q的平方和
    sumxsq = sum([p[i]**2 for i in range(n)])
    sumysq = sum([q[i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值