关于矩阵

 一、可逆矩阵的定义及性质
       定义 3.1   设A ∈Mn (F ), 若存在同阶矩阵 B ,使AB=BA=E ,则称A 为可逆矩阵, B 为A 的逆矩阵,简称为 A 的逆,记为   B= A-1 。
如果A 是可逆矩阵,那么 A 的逆是唯一的。这是因为当 B ,C 都是A 的逆时,有
           AB=BA=E=AC=CA ,
           B=BE=B (AC )= (BAC=EC=C 。
可逆矩阵的性质:
1 、  [我是一个图片]
  =A  ;
2 、 如果A 可逆,数λ≠ 0 ,那么 ( [我是一个图片]
 A)-1= [我是一个图片]
 A-1 ;
3 、 如果A 可逆,那么,A T 也可逆,而且 ( AT )-1=( A-1)T ;
4 、 如果A ,B 皆可逆,那么 AB 也可逆,且(AB) -1=B-1A-1           。
两个n 阶矩阵A 与B 的乘积AB=E 时,一定有BA=E ,从而A ,B 互为逆矩阵。
二、奇异矩阵
奇异矩阵是线形代数的概念,就是对应的行列式等于0的矩阵。
  奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。 然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。例如矩阵:
0     1
1     0
三、正定矩阵
设M是n阶实系数对称矩阵, 如果对任何非零向量
  X=(x_1,...x_n) 都有 XMX′>0,就称M正定(Positive Definite)。
  正定矩阵在相似变换下可化为标准型, 即单位矩阵。
  所有特征值大于零的矩阵也是正定矩阵。
  另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值