信号与系统笔记——第四章 傅里叶变换与频域分析(一)

4.0 引言

4.1 信号分解为正交函数

Z4.01 矢量的正交分解

1.矢量正交

2.正交矢量集 

正交矢量集:由两两正交的矢量组成的矢量集合。

3.非正交矢量的近似表示及误差

显然,当两矢量V₁与V₂正交时,c₁₂=0,即V₁·V₂=0。

[推广]

正交信号之间无法互相表示。

4.矢量正交分解

矢量正交分解:任意N维矢量可由N维正交坐标系表示。

思路:将矢量空间正交分解的概念推广到信号空间——在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性组。

Z4.02 信号的正交分解

1.信号正交

2.正交函数集

 3.完备正交函数集

 4.信号的正交分解

Z4.03 帕斯瓦尔定理

4.2 周期信号的傅里叶级数

Z4.04 三角形式的傅里叶级数

1.三角形式的傅里叶级数

a₀/2是为了将a₀包含在aₙ中,n的取值从0开始,n=0,1,2,3......

2.狄利克雷条件

 

每个条件下给出的图均为反例。 

3.余弦形式的傅里叶级数

 含义:周期信号可分解为直流和许多余弦分量。

 4.吉布斯现象

Z4.05 周期信号波形对称性和谐波特性

1.f(t)为偶函数——对称于纵轴 f(t) = f(-t)

  2.f(t)为奇函数——对称于原点 f(t) = -f(-t)

3. f(t)为奇谐函数——对称于原点 f(t) = -f(t±T/2)

4. f(t)为偶谐函数——对称于原点 f(t) = f(t±T/2) 

 Z4.06 指数形式的傅里叶级数

三角形式的傅里叶级数,含义比较明确,但运算常感不便,因而经常采用指数形式的傅里叶级数。

 

 

Z4.07 两种傅里叶级数展开形式的关系

注:本文出自对bilibili 【西安电子科技大学】郭宝龙教授(课程负责:朱娟娟) 信号与系统(第四章) 内容的学习笔记。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值