4.0 引言
4.1 信号分解为正交函数
Z4.01 矢量的正交分解
1.矢量正交
2.正交矢量集
正交矢量集:由两两正交的矢量组成的矢量集合。
3.非正交矢量的近似表示及误差
显然,当两矢量V₁与V₂正交时,c₁₂=0,即V₁·V₂=0。
[推广]
正交信号之间无法互相表示。
4.矢量正交分解
矢量正交分解:任意N维矢量可由N维正交坐标系表示。
思路:将矢量空间正交分解的概念推广到信号空间——在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性组。
Z4.02 信号的正交分解
1.信号正交
2.正交函数集
3.完备正交函数集
4.信号的正交分解
Z4.03 帕斯瓦尔定理
4.2 周期信号的傅里叶级数
Z4.04 三角形式的傅里叶级数
1.三角形式的傅里叶级数
a₀/2是为了将a₀包含在aₙ中,n的取值从0开始,n=0,1,2,3......
2.狄利克雷条件
每个条件下给出的图均为反例。
3.余弦形式的傅里叶级数
含义:周期信号可分解为直流和许多余弦分量。
4.吉布斯现象
Z4.05 周期信号波形对称性和谐波特性
1.f(t)为偶函数——对称于纵轴 f(t) = f(-t)
2.f(t)为奇函数——对称于原点 f(t) = -f(-t)
3. f(t)为奇谐函数——对称于原点 f(t) = -f(t±T/2)
4. f(t)为偶谐函数——对称于原点 f(t) = f(t±T/2)
Z4.06 指数形式的傅里叶级数
三角形式的傅里叶级数,含义比较明确,但运算常感不便,因而经常采用指数形式的傅里叶级数。
Z4.07 两种傅里叶级数展开形式的关系
注:本文出自对bilibili 【西安电子科技大学】郭宝龙教授(课程负责:朱娟娟) 信号与系统(第四章) 内容的学习笔记。