全连接层与Softmax (softmax classifier)

本文详细探讨了深度神经网络中最后一层常用的全连接层与Softmax激活函数的结合使用。Softmax函数用于多分类问题,它将神经网络的输出转换为概率分布,确保了输出的归一化和可解释性。全连接层则将前一层的所有节点连接到当前层,以产生最终的分类得分。理解这两者的结合对于构建和训练有效的分类模型至关重要。

用于分类的深度神经网络的最后一层往往是全连接层+Softmax,那么他的细节是怎样的?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
reference:
[1] https://www.cnblogs.com/shine-lee/p/10077961.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值