Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where
ID
is a two-digit number representing a given non-leaf node,K
is the number of its children, followed by a sequence of two-digitID
's of its children. For the sake of simplicity, let us fix the root ID to be00
.Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1,A2,⋯,An} is said to be greater than sequence {B1,B2,⋯,Bm} if there exists 1≤k<min{n,m} such that Ai=Bi for i=1,⋯,k, and Ak+1>Bk+1.
Sample Input:
20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19
Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
写这道题真的是耗费了我大量的脑细胞,大概写了2个小时才写完,主要难点在于DFS怎么写。
- ”死胡同“就是到达了叶节点,但同时死胡同也是可能出口(如果权重和==Sum),要写两个if进行判断
- 最后输出的路径是权重值的路径,每次迭代也要累加上权重和
- vector<path>的存储要特别注意!注意使用完(从迭代里出来后)要及时pop_back()
- DFS的参数确定,非常非常重要,一般是会随着迭代(节点选取不同)改变的量
#include<cstdio> #include<vector> #include<queue> #include<algorithm> using namespace std; const int maxn = 110; int weightSum = 0; int target; vector<vector<int> > result; vector<int> path; struct node { int weight; vector<int> child; }Node[maxn]; void DFS(int root, int weightSum) { //递归边界 if (Node[root].child.empty()) { if (weightSum == target) { result.push_back(path); } return; } //不同的分支 for (int i = 0; i < Node[root].child.size(); i++) { if (weightSum + Node[Node[root].child[i]].weight <= target) { path.push_back(Node[Node[root].child[i]].weight); DFS(Node[root].child[i], weightSum + Node[Node[root].child[i]].weight); path.pop_back(); } } } bool cmp(vector<int> a, vector<int> b) { int i = 0; for (i = 0; i < a.size() && i < b.size() && a[i] == b[i] ;i++) { } if (!(i < a.size() && i < b.size())) { return a.size() > b.size(); } return a[i] > b[i]; } int main() { int N, M; scanf("%d%d%d", &N, &M, &target); for (int i = 0; i < N; i++) scanf("%d", &Node[i].weight); for (int i = 0; i < M; i++) { int root, childNum; scanf("%d%d", &root, &childNum); for (int j = 0; j < childNum; j++) { int tmp; scanf("%d", &tmp); Node[root].child.push_back(tmp); } } path.push_back(Node[0].weight); DFS(0, Node[0].weight); sort(result.begin(), result.end(), cmp); for (int i = 0; i < result.size(); i++) { for (int j = 0; j < result[i].size(); j++) { if(j == 0) printf("%d", result[i][j]); else printf(" %d", result[i][j]); } printf("\n"); } return 0; }