
数据处理
文章平均质量分 94
深度人工智能
工业和信息化职业能力证书《人工智能算法工程师》报名考试,普通人进入人工智能行业的最佳途径,有意者私信!
展开
-
深度学习之数据标准化方法综述
数据标准化,顾名思义,就是将原来分布范围不同的数据缩放在一个范围之内,一般来说是标准化到均值为0,标准差为1的标准正态分布,均值为0是为了让数据中心化,让各个维度的特征都平衡,标准差为1是为了让数据在各个维度上的长度都呈现一个单位向量(矩阵),也就是把原来大小范围分布不通的数据缩放成统一量纲,和拳击比赛一样,只有相同重量级的对手才能同台比赛,这里把数据的标准差缩放为1的意义就相当于把轻量级选手的体重加重,把重量级选手的体重减轻,让他们在同一个擂台上比赛,否则比赛就不公平。原创 2022-04-19 20:01:53 · 3316 阅读 · 0 评论 -
深度学习之数据处理方法概述
数据对于深度学习任务结果的影响,主要体现在数据的数量和质量,数据的数量比较容易理解,简单来说就是加大数据量。而要把控数据的质量就比较复杂了,因为在整个数据的处理过程当中,每一个环节都有可能会对数据的质量造成影响,而数据上轻微的影响有可能会造成最终结果上的差距。连全球人工智能著名学者吴恩达都说人工智能=80%数据+20%算法。在人工智能项目的研发过程中,基本上80%的工作量都花在了数据处理上。原创 2022-03-15 16:19:05 · 4477 阅读 · 0 评论