
深度学习
文章平均质量分 90
深度人工智能
工业和信息化职业能力证书《人工智能算法工程师》报名考试,普通人进入人工智能行业的最佳途径,有意者私信!
展开
-
目标检测之困难目标检测任务综述
在困难目标检测领域,常用的评估数据集包括COCO和PASCAL VOC等,这些数据集不仅提供了丰富的训练和测试样本,还特别支持对小目标、遮挡目标、模糊目标等困难目标的检测评估。数据增强增加了模型的鲁棒性,模型架构改进提高了模型的表达能力和泛化能力,先进的后处理技术优化了最终的检测结果,特征融合增强了模型对不同大小和形状目标的识别能力,上下文建模帮助模型更好地理解目标所在的场景,多模态信息融合提供了更多的线索,帮助模型更好地识别目标。这导致了特征信息的缺失,使得传统的特征提取方法难以有效地捕捉到足够的细节。原创 2024-08-27 19:11:08 · 2164 阅读 · 1 评论 -
AI通识教育:可能是我们领先于世界AI的关键
这一课程的开设和发展,对人工智能教育的普及和专业人才的培养起到了积极推动作用,它不仅有助于提升学员对人工智能的认知水平,更是在一定程度上弥补了当前市场上对具备理论素养和实战能力双重特质的人工智能专业人才的巨大需求。但实际上,这种认知存在明显的局限性。其目标是通过这样的教育,使公众及各类专业背景的学习者能够理解人工智能的基本概念,掌握一定的AI技术素养,对于AI的发展,既不狂热吹捧,也不恐惧抗拒,能理性看待AI在日常生活、工作和社会发展中的作用和影响,培养具备跨学科视野和适应未来智能化社会所需的基本能力。原创 2024-03-04 14:01:48 · 1334 阅读 · 0 评论 -
数字人技术发展和应用分析
计算机图形学中的渲染技术,将这个数学模型转化为三维人脸模型,并且在这个基础上,利用一系列的算法和技术,包括纹理映射、法线贴图、光照模型等,使得数字人脸看起来更加真实。那么数字都有哪些特征呢?数字人可以使用深度学习语音合成技术来产生自然流畅的语音,甚至可以模仿某个指定人的音色和说话习惯来发音,还要能够进行人类的自然语言对话,书写流利的文本语言,它们可以回答问题、交流信息等。随着传感器技术和软件算法的不断发展,现在的运动捕捉系统能够以更高的精度和速度捕捉人类的动作,从而产生更逼真的数字人形象。原创 2023-09-19 20:59:18 · 1025 阅读 · 0 评论 -
AIGC之文本内容生成概述(下)—— BERT
BERT的主要原理是通过使用无标签的大规模文本数据进行预训练,学习到通用的语言表示,并在下游任务上进行微调,属于pretraining+fine tuning的学习模式。BERT的关键思想是双向编码器和Transformer自注意力机制。关于自注意力机制在上面的Transformer模型中已经有了详细的介绍,接下来简单介绍一下BERT模型中的双向编码器和它的结构及运行过程。原创 2023-08-19 12:00:00 · 528 阅读 · 0 评论 -
AIGC之文本内容生成概述(上)
想要更好地了解AI在文本生成方面的内容,就需要从自然语言处理方向的技术发展和应用开始。我们将以深度学习在自然语言处理中的技术应用场景作为方向,对主流的文本生成模型进行剖析,下面是对LSTM、Word2Vec、GloVe、ELMo、Transformer、BERT、GPT等多个具有代表性的深度学习文本处理技术的详细介绍,并且对每种技术的优缺点以及应用场景进行了分析。原创 2023-06-20 21:39:00 · 930 阅读 · 0 评论 -
Chat GPT对社会生产结构产生的冲击力远大于 Alpha GO!
Chat GPT其实是Open AI发布的一个GPT3和GPT4之间的过渡版本,也就是GPT3.5,本来也只是测试一下,但是没有想到,市场的反应会如此剧烈。据说Open AI会在2023年的春夏季发布GPT4,届时,当前Chat GPT存在的一些问题,可能都会得到解决。原创 2023-03-01 10:52:26 · 681 阅读 · 0 评论 -
深度学习之数据处理方法概述
数据对于深度学习任务结果的影响,主要体现在数据的数量和质量,数据的数量比较容易理解,简单来说就是加大数据量。而要把控数据的质量就比较复杂了,因为在整个数据的处理过程当中,每一个环节都有可能会对数据的质量造成影响,而数据上轻微的影响有可能会造成最终结果上的差距。连全球人工智能著名学者吴恩达都说人工智能=80%数据+20%算法。在人工智能项目的研发过程中,基本上80%的工作量都花在了数据处理上。原创 2022-03-15 16:19:05 · 4477 阅读 · 0 评论 -
深度学习之神经网络特征综述
深度学习依赖于神经网络所提取的特征而闻名,在以往传统的学习方法中,特征往往是通过具有经验的专家来提取的,而深度学习方法中的特征提取是通过人工神经网络自动提取的,相比而言,深度学习方法对于特征的提取不仅要求更低,不需要专家的参与,而且少了人为的干预,对于特征本身的提取也更加全面,这也是深度学习最近几年在实际应用中越来越受欢迎的原因之一。原创 2022-01-01 23:12:31 · 3716 阅读 · 0 评论 -
基于AI的自动化处理
采用自动化技术不仅可以把人从繁重的体力劳动、部分脑力劳动以及恶劣、危险的工作环境中解放出来,而且能扩展人的器官功能,极大地提高劳动生产率,增强人类认识世界和改造世界的能力。一、游戏娱乐技术思想及原理分析自动化处理领域所用到的技术主要是强化学习Reinforcement Learning(RL),强化学习的原理是给定一个目标,指定规格和奖励方式,然后让模型以蒙特卡洛树的方法去搜索学习,其实就是“试错”学习,通过大量的尝试学习,来区分对与错,模型对正确的选择会进行奖励,而错.原创 2021-11-15 13:39:33 · 4233 阅读 · 0 评论 -
基于AI的自然语言处理
自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。一、文本分类技术思想及原理分析文本分类就是对一段话进行区分是哪个类别,比如一篇新闻所属的行业类别、一段文字的情感分析、一段评论的结果倾向等,都属于对文本的分类。文本分类是先对同一类别的文本打上相同的标签,然后让模型去学习针对不同类别的文本特征。当模型学习到了每个类别的特征后,在使.原创 2021-11-15 13:37:03 · 1565 阅读 · 0 评论 -
基于AI的语音信号处理技术
语音信号处理的目的就是在复杂的语音环境中提取有效的语音信息。一、语音信号技术思想及原理分析语音唤醒的原理是让模型学习特定唤醒词的语音信号特征,当输入设备捕捉到一定阈值范围内的语音信号时,当前设备将会被唤醒,否则平时设备都处于待机状态。比如小米音箱这款产品,我们在使用的时候,一般都会喊一声“小爱同学”,然后再让它执行我们的命令,比如换一首歌,或者减小音量。这个“小爱同学”所发出的语音信号就是模型要学习的标签,当模型学到一定的标签数量时,下次再听到这个标签的声音时,就会做.原创 2021-11-15 13:29:06 · 3038 阅读 · 0 评论 -
基于AI的图像视觉处理技术
计算机视觉是一门研究如何使机器”看“的科学,作为一个学科,它试图建立能够从图像或多维数据中获取”信息“的人工智能系统。一、检测跟踪1.MTCNNMTCNN是比较经典快速的人脸检测技术,它可实现两个任务:人脸检测与人脸关键点检测。这个过程由三个级联的轻量级CNN完成:PNet,RNet和Onet;图像数据先后经这三个网络的处理,最终输出人脸检测和关键点检测结果。技术思想及原理分析本项目的一大技术亮点就是使用了级联卷积的思想,将复杂问题简单化,化整为零,逐一攻破.原创 2021-11-15 13:26:45 · 7738 阅读 · 0 评论 -
CPU、GPU、DPU、TPU、NPU...傻傻分不清楚?实力扫盲——安排
人工智能的发展离不开算力的支持,算力又是依附于各种硬件设备的,没有了算力设备的加持,就好比炼丹少了丹炉一样,可想而知,人工智能智能也就无用武之地了。以深度学习为主的人工智能方向的发展更是离不开强大的算力支持。随着深度学习的不断发展,各种各样的芯片也逐渐抛头露面,见过的,没见过的,听过的没有听过的都出现在眼前,一下有些眼花缭乱,一时竟不知选择哪个?当然前提是不差钱。本学徒在打杂的时候就发现了众多的XPU,例如GPU, TPU, DPU, NPU, BPU……,各种不同的XPU还分不同等级原创 2021-11-14 22:08:51 · 7339 阅读 · 1 评论 -
一种增大Batch的训练方法,低显存GPU也能加载更大的Batch
炼丹药的迷惑相信各位丹友在炼丹期间都会遇到各种各样的问题,有些问题查查资料,做做实验就解决了,有些问题可能还是需要等大佬们去解决。本人在炼丹期间,就遇到了一个问题,这里简单分享一下,一般我们训练模型的时候,选择一个较大的Batch加载训练数据是一个高效训练的方法,当然也不是说Batch越大就越好,一个合适的Batch size对于模型训练才是最好的选择。如果输入是高分辨率图像的时候,由于显存的限制,batch就会变得很小,而且GPU显存总是告急,但是GPU计算资源却大量冗余。如何在加载大分辨率图像原创 2021-11-14 22:04:13 · 1363 阅读 · 1 评论 -
基于深度学习的AI疲劳检测系统
疲劳检测的原理是根据人体疲劳状态下的特征检测,和正常状态下的特征检测做对比。在做疲劳检测之前,首先需要分析人体在疲劳状态下与正常状态下的特征有哪些不同的的表现,这些不同的表现可以通过哪些数值具体的量化出来,然后通过这些量化后的不同数值来判断属于哪种行为;最后根据获取的各种行为综合判断属于疲劳状态或者正常状态。场景分析通过对现有的疲劳检测场景分析,以及对疲劳特征的研究,判断人体属于疲劳或者非疲劳状态的方法可以分为主动检测和被动检测,主动检测需要检测者配合才能进行,操作也..原创 2021-11-14 21:48:24 · 8105 阅读 · 2 评论