
AIGC
文章平均质量分 91
深度人工智能
工业和信息化职业能力证书《人工智能算法工程师》报名考试,普通人进入人工智能行业的最佳途径,有意者私信!
展开
-
扩散模型的技术原理和应用价值
在物理和材料科学研究中,扩散模型被用来预测和优化材料的性质,如通过模拟“炼金”过程,快速探索新材料的合成路径,特别是对于复杂体系,其预测的准确性与速度优势将更加凸显。通过连续的噪声注入步骤,模型学习了如何从一个复杂的数据分布出发,通过一系列确定性的转换,最终达到一个简单的已知分布(高斯噪声分布),这一过程为后续的反向扩散学习提供了基础。通过上面的应用场景可以看出,扩散模型在增强语言模型的多样性方面,不仅能够提升内容的创新性和吸引力,还能促进个性化和定制化内容的生成,为自然语言处理技术带来更广阔的应用空间。原创 2024-06-03 16:47:08 · 1241 阅读 · 0 评论 -
全面解析OpenAI的新作——GPT-4o
GPT-4o作为GPT-4级智能的集大成者,其无与伦比的性能和多模态交互能力,标志着AI技术已经跨过了单纯的文字理解与生成,迈向了一个能理解、回应乃至预测用户多维度需求的新阶段,真正意义上做到了智能服务的全民触达。此外,GPT-4o的远程协助能力也得到了充分展示。一位模拟工程师提出一个复杂的算法优化问题,GPT-4o不仅迅速提供了多条可行的解决方案,而且还自动生成了一段简洁明了的代码示例,并通过内置的代码解释器,以易于理解的语言向在场观众阐述了每行代码的功能与逻辑,这一过程仅仅耗时几秒钟。原创 2024-05-14 18:08:44 · 1617 阅读 · 0 评论 -
探讨自回归模型和扩散模型的发展应用
为提高模型效率,研究者提出了多种快速采样算法,如DDIM(离散扩散模型)和ADM(加速扩散模型),这些方法能够在保证生成质量的前提下,显著减少反向扩散所需的步骤数,从而大幅缩短生成时间。此外,还出现了如半扩散模型这样的新型架构,它结合了扩散模型与传统生成模型的优点,能够在更低的计算成本下生成高质量样本。例如,在音乐创作场景中,一个混合模型可以先根据用户提供的旋律片段或风格标签进行自回归式的后续旋律生成,再通过扩散过程优化生成音乐的质量和细节,确保生成的乐曲既符合用户预期又具有专业级音质。原创 2024-04-24 13:22:14 · 2159 阅读 · 0 评论 -
人工智能时代创作者的抗议!
随着AI替代工具的广泛应用,来自各行各业的反对声音会越来越多,无论是作家群体对人工智能写作可能取代人文创作的忧虑,还是作曲家们对AI谱曲可能削弱音乐原创性与个性表达的异议,甚至是影视行业对AI剪辑和生成内容可能颠覆传统创作模式的警惕,这些抗议的核心动机都指向一个共通点:人类在捍卫自身的劳动成果与职业尊严,力求保护长期以来在各自领域积累的智力产权与精神财富。至于音乐创作,则常常源自生活中的点滴声响,那些无意间捕捉到的旋律、节奏、情感波动,经过艺术家内心的体验和匠心独运的编排,得以转化为美妙的音乐篇章。原创 2024-04-12 19:13:21 · 858 阅读 · 0 评论 -
「他山之石」:大模型时代的“小模型”
拿RTX 4060 Ti显卡为例,该系列推出了8GB和16GB不同显存容量的版本,对于参数量较大的模型,特别是20亿参数等级的模型,16GB显存版本无疑提供了更为宽裕的工作空间,这对于入门级和中级人工智能项目,如涉及大规模模型训练、复杂图像渲染或是高性能计算密集型应用,都能够提供必要的显存支持。这些模型都是在2024年发布的。然而,这样的策略也带来了一个悖论:若大幅度削减大模型的参数量以适应有限的计算资源,那么理论上讲,其原有的规模优势和丰富的表达能力将会削弱,从严格定义上可能就不再符合“大模型”的标准。原创 2024-03-25 18:31:14 · 1143 阅读 · 0 评论 -
Sora:继ChatGPT之后,OpenAI的又一力作
Sora生成的视频呈现出的是大片既视感,无论是镜头变化,还是光影色彩的转变,以及细微到纹理结构的变化,都呈现出了专业摄影师级别的效果;根据OpenAI的介绍和愿景,Sora不只是一个简单的视频生成工具,而是一个能够改变时代的“世界模型”,Sora的开发工程师表示,Sora通过观察大量数据,可以学会许多关于世界的物理规律,这可以被用来模拟真实世界中的事件发生时的状况,比如智能机器人,自动驾驶等。最终发现,在具有高度描述性视频字幕的训练中,不仅可以提高文本的忠实度,还可以提升整体视频的质量。原创 2024-02-17 00:32:10 · 1843 阅读 · 0 评论 -
大模型基础架构的变革:剖析Transformer的挑战者(下)
目前业内对将LLM应用于长文本进行了广泛的研究,主要关注三个领域:长度外推、上下文窗口扩展,以及提高LLM对长文本的利用。.长度外推的目的是使在较短文本上训练的语言模型能够在测试过程中处理较长的文本。一个主要的研究途径是开发Transformer模型的相对位置编码方法,使它们能够在训练窗口之外发挥作用。上下文窗口扩展集中于扩展LLM的上下文窗口,允许在一次向前传递中处理更多的token。一个主要的工作方向是解决训练效率的问题。考虑到Transformer在训练过程中存在对注意力计算随token增长的原创 2024-02-09 17:33:31 · 1291 阅读 · 0 评论 -
大模型基础架构的变革:剖析Transformer的挑战者(中)
上一篇文章中,我们介绍了RetNet、RWKV、Mamba等有可能会替代Transformer的模型架构,这一篇文章我们将要介绍另外三个有可能会替代Transformer的模型架构,它们分别是UniRepLKNet、StripedHyena、PanGu-π,想了解之前的内容,请前往《》一文查阅。原创 2024-02-01 11:53:00 · 1556 阅读 · 0 评论 -
生成式AI大模型对人类进化的影响
你是不是发现每天的工作都离不开ChatGPT之类的语言生成模型?离不开类似Midjourney的图像生成模型?离不开一些设计类的AI辅助工具?如果是,那说明你已经逐步被AI侵蚀了,你的创造力也正在逐渐下降,大模型正在剥夺你的创造力。不可否认,生成式大模型的出现,加速了的人类的发展,但是同时也正在逐渐剥夺着人类的创造力,到最后的结果可能就是大部分人类都会依靠AI来进行社会生产活动。原创 2023-12-22 18:44:57 · 673 阅读 · 0 评论 -
大模型的研究新方向:混合专家模型(MoE)
混合专家模型的实现涉及对专家模型和门控网络的联合训练,在整个数据输入处理的过程中,门控网络起到了动态调配专家模型资源的关键作用,使混合专家模型能够灵活地适应不同的输入数据分布和任务要求。说到这里的“门”概念,与LSTM网络的“门”概念有所不同,MoE的“门”概念主要是用于匹配数据和专家模型之间的连接,就好比不同班级的学生要进不同的教室上课一样,而LSTM的“门”概念主要是一种控制信息流动的装置,它可以保留或通过一定比例的数据,更像是在控制流量,而MoE的“门”概念可以看作是选择要通过的对象。原创 2023-12-13 15:42:13 · 2162 阅读 · 0 评论 -
【论文解读】:大模型免微调的上下文对齐方法
具体来说,通过分析基础LLMs和alignment-tuned版本在令牌分布上的差异,作者发现在大多数情况下,它们在解码上表现几乎相同,主要的变化发生在文体方面,如话语标记和安全声明。通过URIAL的成功应用,作者提出了一个引人深思的观点,即通过巧妙的提示和上下文学习,可以显著减小无调整和基于调整的alignment方法之间的差距。这暗示在SFT过程中,令人瞩目的是,在强基础LLMs(如Mistral-7b和Llama-2-70b)上,URIAL的性能优于经过SFT或SFT+RLHF对齐的LLMs。原创 2023-12-07 18:39:25 · 1404 阅读 · 0 评论 -
游戏AI:游戏开发和运营的新增长点
游戏AI技术在游戏的开发和运营过程中有众多方向的应用,包括游戏情节策划、地图生成、关卡设置、任务生成、对话生成、故事叙述、模型生成,以及游戏内的成长系统和经济系统等规则的生成。目前AI技术在游戏产业的应用才刚刚开始,未来将会有更多的AI技术被应用在游戏领域,为游戏的开发和运营提高效率、降低成本,也为游戏玩家们带来不同的体验。除了利用游戏AI来自动生成关卡和地图,或者在游戏中生成可交互的角色和故事情节之外,游戏AI还可以帮助游戏开发者快速生成一些简单的游戏,如休闲游戏和小游戏等。原创 2023-11-13 20:03:18 · 622 阅读 · 0 评论 -
大模型的背景与现状问题
谈起大模型,第一时间想到的是什么?是主流的ChatGPT?或者GPT4?还是DALL-E3?亦或者Midjourney?以及Stablediffusion?还是层出不穷的其他各类AI Agent应用工具?大模型在2023年突然遍地开花,井喷式发展,尤其是后半年,几乎大部分科技公司、学术团体、研究机构、以及学生团队都在发布各自的大模型,感觉大模型突然从洛阳纸贵到了唾手可得。原创 2023-10-16 18:50:17 · 1664 阅读 · 0 评论 -
AIGC之文本内容生成概述(下)—— GPT
2020年5月28日,OpenAI发布新模型GPT-3。GPT-3被设计用来回答各种自然语言问题,并提供相关的知识和信息。同年6月11日,OpenAI将GPT-3以API的方式向学术机构、商业公司和个人开发者提供了一些需要申请的体验资格,并在同年9月将GPT-3授权给微软公司。对于所有任务,通过纯文本来指定任务和少量样本,GPT-3可以在无需任何梯度更新或微调的情况下被使用。对于GPT-3生成的新闻文章,评估员甚至无法区分其与人类撰写的新闻文章。GPT-3在GPT-2的基础上进行了改进和扩展。原创 2023-09-09 12:00:00 · 1046 阅读 · 0 评论 -
AIGC之文本内容生成概述(下)——Transformer
在基于Transformer的编解码结构出现之前,也有基于RNN和LSTM的Seq2Seq的编解码结构网络,它在编码部分和解码部分所使用的是RNN或LSTM模块,和基于Transformer的编解码结构相比,RNN和LSTM模块在参数量和注意力机制这一块是区别最大的,Transformer由于全连接的模块设计,加上对数据集全领域的注意力施加,使得其在参数量和效果上远远高于使用RNN和LSTM模块的Seq2Seq编解码结构。解码器的作用是将编码器的输出和自身的输入进行交互,生成最终的解码结果。原创 2023-07-16 12:50:36 · 2012 阅读 · 0 评论 -
AIGC之文本内容生成概述(上)
想要更好地了解AI在文本生成方面的内容,就需要从自然语言处理方向的技术发展和应用开始。我们将以深度学习在自然语言处理中的技术应用场景作为方向,对主流的文本生成模型进行剖析,下面是对LSTM、Word2Vec、GloVe、ELMo、Transformer、BERT、GPT等多个具有代表性的深度学习文本处理技术的详细介绍,并且对每种技术的优缺点以及应用场景进行了分析。原创 2023-06-20 21:39:00 · 930 阅读 · 0 评论 -
AIGC之图像生成内容介绍
综合来看,各种生成图像的技术都有自己的优点和局限性,在不同的应用场景中需要选择适合的技术。图像生成是指通过计算机算法和模型生成新的图像,这些图像可能是完全虚构的、艺术创作的、或者是根据现有图像进行修改和增强的。- DSTD深度学习模型:Stable Diffusion 还使用了一种名为 Deep Stable Diffusion (DSTD) 的深度学习模型,该模型结合了神经网络和 stable diffusion 算法,能够自动学习和调整噪声的统计特性,从而生成更加真实和细致的图像。原创 2023-05-17 12:30:00 · 2642 阅读 · 0 评论