
图像视觉
文章平均质量分 92
深度人工智能
工业和信息化职业能力证书《人工智能算法工程师》报名考试,普通人进入人工智能行业的最佳途径,有意者私信!
展开
-
图像分割技术综述(二)
不同于传统的目标检测或语义分割任务,SAM 的目标是提供一种通用的分割能力,能够根据用户的指示对图像中的任何对象进行分割,无论该对象是什么类型或是之前是否见过。利用来自不同传感器或成像模式的数据进行融合,可以提供更丰富的信息支持,增强分割结果的准确性和鲁棒性,预计这一领域将继续发展,并探索更多有效的融合策略。在 ASPP 模块的基础上,DeepLab v3+ 进一步增强了解码器部分,不仅结合了来自编码器的不同层次特征,还采用了更多的跳跃连接,使得模型能够在保持高效的同时生成更加精细的分割结果。原创 2024-12-13 15:21:46 · 1088 阅读 · 0 评论 -
目标检测技术的发展:从R-CNN、YOLO到DETR、DINO
OV-DINO的出现标志着在开放域目标检测领域的重大进步,其在处理未见过的物体类别时的能力得到了显著提升。这项技术对于需要适应未知或变化环境的应用具有重要意义,如自动驾驶、机器人视觉、安防监控等。原创 2024-09-30 16:33:15 · 1863 阅读 · 0 评论 -
物体识别之微特征识别任务综述
这一领域面临的挑战是如何在提高识别精度的同时,应对复杂多变的环境因素,比如光照条件、遮挡问题以及动态环境下的识别难题。同时,如何通过技术手段有效防止欺诈行为也是一个重要的课题。在电商领域,推荐系统可能需要分析商品的图片来识别产品的样式、颜色等属性,同时也要考虑用户留下的评价文本,从中提取情感倾向和具体的反馈信息。有些分类识别任务可能会同时涉及多种类型的数据,包括图像、视频和文本等,这样的复杂任务要求系统不仅要具备处理单一类型数据的能力,还需要能够综合分析多种数据源的信息,以达到更准确和全面的结果。原创 2024-09-14 18:13:12 · 2156 阅读 · 0 评论 -
目标检测之困难目标检测任务综述
在困难目标检测领域,常用的评估数据集包括COCO和PASCAL VOC等,这些数据集不仅提供了丰富的训练和测试样本,还特别支持对小目标、遮挡目标、模糊目标等困难目标的检测评估。数据增强增加了模型的鲁棒性,模型架构改进提高了模型的表达能力和泛化能力,先进的后处理技术优化了最终的检测结果,特征融合增强了模型对不同大小和形状目标的识别能力,上下文建模帮助模型更好地理解目标所在的场景,多模态信息融合提供了更多的线索,帮助模型更好地识别目标。这导致了特征信息的缺失,使得传统的特征提取方法难以有效地捕捉到足够的细节。原创 2024-08-27 19:11:08 · 2164 阅读 · 1 评论 -
目标检测研究方向——开放域目标检测
训练完成后,模型仅能识别训练数据中出现过的类别。从模型能力上看,在封闭域目标检测中,模型被设计为只识别训练时提供的预定义类别,并且假设测试图像中只会出现这些已知类别,模型通过大量的训练数据来学习这些预定义类别的特征,并进行优化,确保在这些类别的识别上达到最佳效果;相比之下,开放域目标检测要求模型不仅要能够识别训练时提供的已知类别,还需要能够处理在测试数据中可能出现的未知类别,模型需要具备较强的泛化能力,能够在面对未知类别时做出合理的响应,如识别出这是一个未知类别,而不是错误地将其归类为一个已知类别。原创 2024-08-10 11:52:18 · 1338 阅读 · 0 评论 -
CV任务中如何解决图像光照度不均匀的问题
在以图像视觉为主的CV任务当中,经常会遇到图像光照不均匀的情况,这种情况往往会影响到图像的对比度问题,从而影响到CV任务的最终结果。比如我们在做人脸识别的时候,由于每个人所处的环境的不同,目标人物脸上的光照情况也是不一样的,我们无法保证每个人的人脸光照度都是均匀的。那么就有可能会影响到最终识别的结果。如果出现这种情况,是需要我们进行一定的处理的。原创 2022-02-16 22:56:35 · 13108 阅读 · 1 评论 -
基于AI的图像视觉处理技术
计算机视觉是一门研究如何使机器”看“的科学,作为一个学科,它试图建立能够从图像或多维数据中获取”信息“的人工智能系统。一、检测跟踪1.MTCNNMTCNN是比较经典快速的人脸检测技术,它可实现两个任务:人脸检测与人脸关键点检测。这个过程由三个级联的轻量级CNN完成:PNet,RNet和Onet;图像数据先后经这三个网络的处理,最终输出人脸检测和关键点检测结果。技术思想及原理分析本项目的一大技术亮点就是使用了级联卷积的思想,将复杂问题简单化,化整为零,逐一攻破.原创 2021-11-15 13:26:45 · 7738 阅读 · 0 评论 -
人工智能图像视觉领域的人才缺口巨大,你了解相关的产品应用类型吗?
人工智能技术是目前最为热门的高新技术之一,可以称之为科技界的“高富帅”,但凡是从业者,不但薪资高、外表华丽,最主要还是国家战略发展方向,未来的朝阳行业。人工智能已经逐渐渗透到了各行各业,开始影响着我们的衣食住行,未来这种影响将会更加的明显,可以说无AI不时髦,如果不懂得使用AI的产品,那么将会被这个时代遗弃。计算机视觉领域的市场与人才需求AI领域的应用让人眼花缭乱,几乎每过一段时间都会有新的应用产品现身,有的时候仅仅是一款产品下的AI应用就层出不穷,比如以抖音为例,上面的各..原创 2021-11-14 21:57:36 · 1666 阅读 · 0 评论