理解人脸图像特征提取的各种方法(至少包括HoG、Dlib和卷积神经网络特征)
HOG提供人脸图像的头像
用于行人检测的 HOG 特征描述子,是基于 64×128 大小的图像。但图像可能是任何尺寸的,对于这些之后用于分析的图像,唯一需要进行的处理是调整纵横比图像大小。HOG特征提取方法就是将一个image:灰度化(将图像看做一个x,y,z(灰度)的三维图像);计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。将每几个cell组成一个block(例如3*3个cell/block),一个block内所有cell的特征descriptor串联起来便得到该block的HOG特征descriptor。
Dlib识别人脸图像的头像
基本概念:人脸识别按顺序可以大体上分为四个部分,即人脸检测,人脸对齐,人脸校验和人脸识别。 人脸检测就是在一张图片中找到人脸所处的位置,即将人脸圈出来,比如拍照时数码相机自动画出人脸。人脸对齐就是在已经检测到的人脸的基础上
Dlib是一个现代化的C ++工具箱,其中包含用于在C ++中创建复杂软件以解决实际问题的机器学习算法和工具。它广泛应用于工业界和学术界,包括机器人,嵌入式设备,移动电话和大型高性能计算环境。Dlib的开源许可证 允许您在任何应用程序中免费使用它。
卷积神经网络识别人脸图像的头像
可以理解为将输入的人脸图像,转换成一个向量的表示
卷积网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对卷积网络加以训练,网络就具有输入输出对之间的映射能力。
卷积神经网络CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习