Python:处理Robot Navigation数据集的标签

本文介绍了一种将机器人导航原始数据进行预处理的方法,通过读取CSV文件中的传感器读数,将其转换为适用于机器学习模型的数据格式。具体包括将分类标签转化为数值型标签,并将处理后的数据保存为新的CSV文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import pandas as pd

data = np.array(pd.read_csv(r'E:\dataset\未处理数据集\Robot Navigation\sensor_readings_24.csv',header=None))
X = data[:,:-1]
y = data[:,-1]
label = []
n = len(y)

for i in range(n):
    if y[i] == 'Slight-Right-Turn':
        label.append(0)
    elif y[i] == 'Move-Forward':
        label.append(1)
    elif y[i] == 'Slight-Left-Turn':
        label.append(2)
    elif y[i] == 'Sharp-Right-Turn':
        label.append(3)

label = np.vstack(label)
Data = np.hstack((X,label))
Data = pd.DataFrame(Data)

Data.to_csv(r"E:\dataset\未处理数据集\Robot Navigation\Robot_Navigation_24.csv",header=None,index=None)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值