四个子空间
本节我们将讨论矩阵的四个基本子空间,上一节我们知道向量空间由其维数及基确定,因此我们将从子空间的维数以及如何求得基来讨论,对于 m × n m×n m×n矩阵 A A A,四个子空间是:
- 列空间 C ( A ) ∈ R m C(A) ∈ R^m C(A)∈Rm, d i m C ( A ) = r dimC(A) = r dimC(A)=r,主列即为列空间的基
- 零空间 N ( A ) ∈ R n N(A) ∈ R^n N(A)∈Rn, d i m N ( A ) = n − r dimN(A) = n - r dimN(A)=n−r, A x = 0 Ax=0 Ax=0特解即为零空间的基
以上两个是上一节介绍的内容,另外一个是行空间,故名思意,由矩阵的行向量所有线性组合得到,这里我们习惯用列向量,那么如何用列向量来表达呢?可以表示为 A T A^{\mathrm {T} } AT的列向量,最后一个是转置矩阵的零空间,又称左零空间。即:
- 行空间 C ( A T ) ∈ R n C(A^{\mathrm {T} }) ∈R^n C(AT)∈Rn, d i m C ( A T ) = r ; dimC(A^{\mathrm {T} })=r; dimC(AT)=r; ( r a n k ( A T ) = r a n k ( A ) rank(A^{\mathrm {T} })=rank(A) rank(AT)=rank(A))
- 左零空间 N ( A T ) ∈ R m N(A^{\mathrm {T} }) ∈R^m N(AT)∈Rm, d i m C ( A T ) = m − r dimC(A^{\mathrm {T} })=m-r dimC(AT)=m−r
观察这些子空间可以发现,
n
n
n维空间中存在两个维数,一个是
r
r
r维的行空间,一个是
n
−
r
n-r
n−r维的零空间,两个维数相加恰好等于
n
n
n。对于
m
m
m维空间有同样的性质:
接下来如何求解行空间和左零空间的特解呢?我们想到的可能是对矩阵
A
T
A^{\mathrm {T} }
AT进行消元、行化简,其主列就是行向量的基,这样当然可以求得,但是这样增加了
A
T
A^{\mathrm {T} }
AT的转换工作。我们还是以上一节的矩阵为例:
A
=
[
1
2
3
1
1
1
2
1
1
2
3
1
]
⇒
[
1
0
1
1
0
1
1
0
0
0
0
0
]
=
R
A=\left[\begin{array}{ccc}1&2&3&1\\1&1&2&1\\1&2&3&1\end{array}\right]\Rightarrow \left[\begin{array}{cc|cc}1&0&1&1\\0&1&1&0\\ \hline 0&0&0&0\end{array}\right] = R
A=⎣⎡111212323111⎦⎤⇒⎣⎡100010110100⎦⎤=R
经过化简后,显然矩阵的列空间发生了变化,基
C
(
A
)
≠
C
(
R
)
C(A)≠C(R)
C(A)=C(R),但是其行空间未发生变换,因为消元、行化简等价于对行做线性组合,因此
C
(
A
T
)
=
C
(
R
T
)
C(A^{\mathrm {T}})=C(R^{\mathrm {T}})
C(AT)=C(RT),这里矩阵
R
R
R行空间的基显然是前两行,因此我们得出结论是:矩阵
A
A
A行空间的基是矩阵
R
R
R的前
r
r
r行。
对于左零空间,有
A
T
y
=
0
→
(
A
T
y
)
T
=
0
T
→
y
T
A
=
0
T
A^Ty=0 \rightarrow (A^Ty)^T=0^T\rightarrow y^TA=0^T
ATy=0→(ATy)T=0T→yTA=0T ,因此得名。
那么如何找到他的基呢。这里我们用Gauss-Jordan消元,将增广矩阵
[
A
m
×
n
I
m
×
m
]
\left[\begin{array}{c|c}A_{m \times n} & I_{m \times m}\end{array}\right]
[Am×nIm×m]中
A
A
A的部分划为简化行阶梯形式
[
R
m
×
n
E
m
×
m
]
\left[\begin{array}{c|c}R_{m \times n} & E_{m \times m}\end{array}\right]
[Rm×nEm×m],此时矩阵
E
E
E会将所有的行变换记录下来。则
E
A
=
R
EA=R
EA=R,而在前几讲中,有当
A
′
A'
A′是
m
m
m阶可逆方阵时,
R
′
R'
R′ 即是
I
I
I,所以
E
′
E'
E′就是
A
−
1
A^{-1}
A−1 。当然本例中矩阵
A
A
A不是方阵,应用该方法后可得到以下形式:
[
A
I
]
=
[
1
2
3
1
1
0
0
1
1
2
1
0
1
0
1
2
3
1
0
0
1
]
⇒
[
1
0
1
1
−
1
2
0
0
1
1
0
1
−
1
0
0
0
0
0
−
1
0
1
]
=
[
R
E
]
\left[\begin{array}{c|c}A & I\end{array}\right]=\left[\begin{array}{cccc|ccc}1&2&3&1&1&0&0\\1&1&2&1&0&1&0\\1&2&3&1&0&0&1\end{array}\right]\Rightarrow \left[\begin{array}{cccc|ccc}1&0&1&1&-1&2&0\\0&1&1&0&1&-1&0\\ 0&0&0&0&-1&0&1\end{array}\right]=\left[\begin{array}{c|c}R & E\end{array}\right]
[AI]=⎣⎡111212323111100010001⎦⎤⇒⎣⎡100010110100−11−12−10001⎦⎤=[RE]
消元可以看成矩阵乘法的形式,即
E
[
A
I
]
=
[
R
E
]
E\left[\begin{array}{c|c}A & I\end{array}\right]=\left[\begin{array}{c|c}R & E\end{array}\right]
E[AI]=[RE],所以
E
A
=
R
EA=R
EA=R,这里有:
E
A
=
[
−
1
2
0
1
−
1
0
−
1
0
1
]
[
1
2
3
1
1
1
2
1
1
2
3
1
]
=
R
=
[
1
0
1
1
0
1
1
0
0
0
0
0
]
EA=\left[\begin{array}{cccc}-1&2&0\\1&-1&0\\ -1&0&1\end{array}\right]\left[\begin{array}{ccc}1&2&3&1\\1&1&2&1\\1&2&3&1\end{array}\right]=R=\left[\begin{array}{cccc}1&0&1&1\\0&1&1&0\\ 0&0&0&0\end{array}\right]
EA=⎣⎡−11−12−10001⎦⎤⎣⎡111212323111⎦⎤=R=⎣⎡100010110100⎦⎤
回到我们最初的问题,我们尝试找到一个产生零行向量的行组合,很明显,
R
R
R中的最后
m
−
r
m-r
m−r行为零行向量,式中
E
E
E的最后一行对
A
A
A的行做线性组合后,得到
R
R
R的最后一行,即
0
0
0向量,也就是
y
T
A
=
0
T
y^TA=0^T
yTA=0T。向量
[
−
1
0
1
]
\left[\begin{array}{c}-1\\0\\1\end{array}\right]
⎣⎡−101⎦⎤即为左零向量的基。