第十节 四个基本子空间

四个子空间

本节我们将讨论矩阵的四个基本子空间,上一节我们知道向量空间由其维数及基确定,因此我们将从子空间的维数以及如何求得基来讨论,对于 m × n m×n m×n矩阵 A A A,四个子空间是:

  • 列空间 C ( A ) ∈ R m C(A) ∈ R^m C(A)Rm d i m C ( A ) = r dimC(A) = r dimC(A)=r,主列即为列空间的基
  • 零空间 N ( A ) ∈ R n N(A) ∈ R^n N(A)Rn d i m N ( A ) = n − r dimN(A) = n - r dimN(A)=nr A x = 0 Ax=0 Ax=0特解即为零空间的基

以上两个是上一节介绍的内容,另外一个是行空间,故名思意,由矩阵的行向量所有线性组合得到,这里我们习惯用列向量,那么如何用列向量来表达呢?可以表示为 A T A^{\mathrm {T} } AT的列向量,最后一个是转置矩阵的零空间,又称左零空间。即:

  • 行空间 C ( A T ) ∈ R n C(A^{\mathrm {T} }) ∈R^n C(AT)Rn d i m C ( A T ) = r ; dimC(A^{\mathrm {T} })=r; dimC(AT)=r ( r a n k ( A T ) = r a n k ( A ) rank(A^{\mathrm {T} })=rank(A) rank(AT)=rank(A))
  • 左零空间 N ( A T ) ∈ R m N(A^{\mathrm {T} }) ∈R^m N(AT)Rm d i m C ( A T ) = m − r dimC(A^{\mathrm {T} })=m-r dimC(AT)=mr

观察这些子空间可以发现, n n n维空间中存在两个维数,一个是 r r r维的行空间,一个是 n − r n-r nr维的零空间,两个维数相加恰好等于 n n n。对于 m m m维空间有同样的性质:
在这里插入图片描述
接下来如何求解行空间和左零空间的特解呢?我们想到的可能是对矩阵 A T A^{\mathrm {T} } AT进行消元、行化简,其主列就是行向量的基,这样当然可以求得,但是这样增加了 A T A^{\mathrm {T} } AT的转换工作。我们还是以上一节的矩阵为例:
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] ⇒ [ 1 0 1 1 0 1 1 0 0 0 0 0 ] = R A=\left[\begin{array}{ccc}1&2&3&1\\1&1&2&1\\1&2&3&1\end{array}\right]\Rightarrow \left[\begin{array}{cc|cc}1&0&1&1\\0&1&1&0\\ \hline 0&0&0&0\end{array}\right] = R A=111212323111100010110100=R
经过化简后,显然矩阵的列空间发生了变化,基 C ( A ) ≠ C ( R ) C(A)≠C(R) C(A)=C(R),但是其行空间未发生变换,因为消元、行化简等价于对行做线性组合,因此 C ( A T ) = C ( R T ) C(A^{\mathrm {T}})=C(R^{\mathrm {T}}) C(AT)=C(RT),这里矩阵 R R R行空间的基显然是前两行,因此我们得出结论是:矩阵 A A A行空间的基是矩阵 R R R的前 r r r
对于左零空间,有 A T y = 0 → ( A T y ) T = 0 T → y T A = 0 T A^Ty=0 \rightarrow (A^Ty)^T=0^T\rightarrow y^TA=0^T ATy=0(ATy)T=0TyTA=0T ,因此得名。
那么如何找到他的基呢。这里我们用Gauss-Jordan消元,将增广矩阵 [ A m × n I m × m ] \left[\begin{array}{c|c}A_{m \times n} & I_{m \times m}\end{array}\right] [Am×nIm×m] A A A的部分划为简化行阶梯形式 [ R m × n E m × m ] \left[\begin{array}{c|c}R_{m \times n} & E_{m \times m}\end{array}\right] [Rm×nEm×m],此时矩阵 E E E会将所有的行变换记录下来。则 E A = R EA=R EA=R,而在前几讲中,有当 A ′ A' A m m m阶可逆方阵时, R ′ R' R 即是 I I I,所以 E ′ E' E就是 A − 1 A^{-1} A1 。当然本例中矩阵 A A A不是方阵,应用该方法后可得到以下形式:
[ A I ] = [ 1 2 3 1 1 0 0 1 1 2 1 0 1 0 1 2 3 1 0 0 1 ] ⇒ [ 1 0 1 1 − 1 2 0 0 1 1 0 1 − 1 0 0 0 0 0 − 1 0 1 ] = [ R E ] \left[\begin{array}{c|c}A & I\end{array}\right]=\left[\begin{array}{cccc|ccc}1&2&3&1&1&0&0\\1&1&2&1&0&1&0\\1&2&3&1&0&0&1\end{array}\right]\Rightarrow \left[\begin{array}{cccc|ccc}1&0&1&1&-1&2&0\\0&1&1&0&1&-1&0\\ 0&0&0&0&-1&0&1\end{array}\right]=\left[\begin{array}{c|c}R & E\end{array}\right] [AI]=111212323111100010001100010110100111210001=[RE]
消元可以看成矩阵乘法的形式,即 E [ A I ] = [ R E ] E\left[\begin{array}{c|c}A & I\end{array}\right]=\left[\begin{array}{c|c}R & E\end{array}\right] E[AI]=[RE],所以 E A = R EA=R EA=R,这里有:
E A = [ − 1 2 0 1 − 1 0 − 1 0 1 ] [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = R = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] EA=\left[\begin{array}{cccc}-1&2&0\\1&-1&0\\ -1&0&1\end{array}\right]\left[\begin{array}{ccc}1&2&3&1\\1&1&2&1\\1&2&3&1\end{array}\right]=R=\left[\begin{array}{cccc}1&0&1&1\\0&1&1&0\\ 0&0&0&0\end{array}\right] EA=111210001111212323111=R=100010110100
回到我们最初的问题,我们尝试找到一个产生零行向量的行组合,很明显, R R R中的最后 m − r m-r mr行为零行向量,式中 E E E的最后一行对 A A A的行做线性组合后,得到 R R R的最后一行,即 0 0 0向量,也就是 y T A = 0 T y^TA=0^T yTA=0T。向量 [ − 1 0 1 ] \left[\begin{array}{c}-1\\0\\1\end{array}\right] 101即为左零向量的基。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值