深入探究矩阵的四个基本子空间之间的联系

本文深入探讨了矩阵的四个基本子空间——列空间、零空间、行空间和左零空间,阐述了它们的定义、性质以及相互之间的关系。列空间由矩阵的所有列向量生成,其维数等于矩阵的秩;零空间是矩阵方程Ax=0的解集,其维数等于n-r;行空间等价于AT的列空间,维数同样为r;左零空间为AT的零空间,包含于Rm中,维数为m-r。矩阵的行秩等于列秩,初等行变换不影响行空间但会改变列空间。
摘要由CSDN通过智能技术生成

设 A 是一个 m×n 维矩阵, rankA=r.

  • 列空间

    • A 的所有列向量生成的空间称为 A 的列空间,记为 C(A).
    • 由于 A 的每一列都是 m 维列向量,因此 C(A)⊂Rm.
    • A 的列空间的维数为 rankA=r,A 的任意 r 个线性无关的列向量都是 C(A) 的一组基。
  • 零空间

    • Ax=0 的解 x 的集合称为 A 的零空间,记为 N(A).
    • 由于 x 是 n 维列向量,因此 N(A)⊂Rn.
    • A 的零空间的维数为 n−rankA=n−r,也就是自由变量的个数,Ax=0 的 n−r 个特解(或称为基础解系)构成 N(A) 的一组基。
    • 零空间与列空间维数的关系: 

      dimC(A)+dimN(A)=n.

  • 行空间

    • A 的所有行向量张成的空间称为 A 的行空间,也即是 AT 的所有列向量生成的列空间,也即是 AT 的列空间,记为 C(AT).
    • 由于 A 的每一行都是 n 维向量,因此 C(AT)⊂Rn.
    • A 的行空间的维数为 rankA=r,A 的任意 r 个线性无关的行都是 C(AT) 的一组基。
    • A 的行空间与列空间的维数相等,都等于 A 的秩,即 

      dimC(AT)=dimC(A)=rankA.


      因为矩阵的行秩等于列秩,下文我们会给出具体原因。
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值