微分学<4>——微分中值定理

微分中值定理

极值

定义4.1 极大(小)值

若存在 x 0 x_{0} x0的邻域 U ( x 0 , δ ) U\left ( x_{0}, \delta \right ) U(x0,δ),使得 ∀ x ∈ U ( x 0 ) , δ \forall x\in U\left ( x_{0}\right), \delta xU(x0),δ, f ( x ) ≤ f ( x 0 ) f\left(x\right ) \le f\left(x_{0}\right ) f(x)f(x0),则称 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点。
若存在 x 0 x_{0} x0的邻域 U ( x 0 , δ ) U\left ( x_{0}, \delta \right ) U(x0,δ),使得 ∀ x ∈ U ( x 0 ) , δ \forall x\in U\left ( x_{0}\right), \delta xU(x0),δ, f ( x ) ≥ f ( x 0 ) f\left(x\right ) \ge f\left(x_{0}\right ) f(x)f(x0),则称 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极小值点。

定理4.1 Fermat引理

x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极值点,且函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处可导,则 f ′ ( x 0 ) = 0 f^{\prime }\left ( x_{0} \right )=0 f(x0)=0

不妨设 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点。
x ∈ ( x 0 , x 0 + δ ) x\in \left ( x_{0},x_{0}+\delta \right ) x(x0,x0+δ),则 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≤ 0 \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x} \le 0 Δxf(x0+Δx)f(x0)0,
根据函数极限的保不等号性, f + ′ ( x 0 ) = lim ⁡ x 0 + → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≤ 0 f^{\prime } _{+}\left ( x_{0} \right ) =\lim_{x_{0}^{+} \to 0} \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x}\le 0 f+(x0)=limx0+0Δxf(x0+Δx)f(x0)0;
同理令 x ∈ ( x 0 − δ , x 0 ) x\in \left ( x_{0}-\delta,x_{0}\right ) x(x0δ,x0),则 f − ′ ( x 0 ) = lim ⁡ x 0 − → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≥ 0 f^{\prime } _{-}\left ( x_{0} \right ) =\lim_{x_{0}^{-} \to 0} \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x}\ge 0 f(x0)=limx00Δxf(x0+Δx)f(x0)0,
因为函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处可导,所以函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0 f + ′ ( x 0 ) = f − ′ ( x 0 ) = f ′ ( x 0 ) = 0 f^{\prime } _{+}\left ( x_{0} \right ) =f^{\prime } _{-}\left ( x_{0} \right ) =f^{\prime }\left ( x_{0} \right )=0 f+(x0)=f(x0)=f(x0)=0

定理4.2 Rolle定理

函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导, f ( a ) = f ( b ) f\left ( a \right )=f\left ( b \right ) f(a)=f(b),则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f(ξ)=0

根据最值定理, f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上必有最大值 M M M和最小值 m m m,也就是 ∃ η \exists \eta η, ξ ∈ [ a , b ] \xi \in \left [ a,b \right ] ξ[a,b]: ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( η ) = m = min ⁡ f ( x ) f\left ( \eta \right )=m= \min f\left ( x \right ) f(η)=m=minf(x), f ( ξ ) = M = max ⁡ f ( x ) f\left ( \xi \right )=M=\max f\left ( x \right ) f(ξ)=M=maxf(x)
<1> M = m M=m M=m
此时函数 f ( x ) f\left ( x \right ) f(x)为常数函数,显然 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f(ξ)=0
<2> M > m M> m M>m
此时 M = f ( ξ ) M=f\left ( \xi \right ) M=f(ξ) f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上的一个极大值, ξ \xi ξ是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点,
根据Fermat引理, f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f(ξ)=0

Lagrange中值定理

定理4.3 Lagrange中值定理

函数 y = f ( x ) y=f\left ( x \right ) y=f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{\prime } \left ( \xi \right )=\frac{f\left ( b\right ) -f\left ( a \right ) }{b-a} f(ξ)=baf(b)f(a)

任取 x ∈ ( a , b ) x \in \left ( a,b \right ) x(a,b), x = t x=t x=t处切线斜率为 f ′ ( t ) f^{\prime } \left ( t \right ) f(t)
另外连接闭区间 [ a , b ] \left [ a,b \right ] [a,b]端点的割线斜率为 k = f ( b ) − f ( a ) b − a k=\frac{f\left ( b \right )-f\left ( a \right ) }{b-a} k=baf(b)f(a),割线方程为 y − f ( a ) = ( f ( b ) − f ( a ) b − a ) ( x − a ) y-f\left ( a \right )=\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{b-a} \right )\left ( x-a \right ) yf(a)=(baf(b)f(a))(xa),
而点 ( t , f ( t ) ) \left (t ,f\left (t \right ) \right ) (t,f(t))到割线 y = ( f ( b ) − f ( a ) b − a ) ( x − a ) y=\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{b-a} \right )\left ( x-a \right ) y=(baf(b)f(a))(xa)的距离函数为 d ( x ) = ∣ k ( x − a ) + f ( a ) − f ( x ) ∣ 1 + k 2 d\left ( x \right )=\frac{\left | k\left ( x-a \right )+f\left ( a \right ) -f\left ( x \right )\right | }{\sqrt{1+k^{2} } } d(x)=1+k2 k(xa)+f(a)f(x), d ′ ( x ) = ∣ k − f ′ ( x ) ∣ 1 + k 2 d^{\prime } \left ( x \right ) =\frac{\left | k-f^{\prime } \left ( x \right ) \right | }{\sqrt{1+k^{2} } } d(x)=1+k2 kf(x),
因为 d ( x ) d\left ( x \right ) d(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,且 d ( a ) = d ( b ) = 0 d \left ( a \right )= d \left ( b \right )=0 d(a)=d(b)=0,所以根据Rolle定理, ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): d ′ ( ξ ) = 0 d^{\prime }\left ( \xi \right )=0 d(ξ)=0,
解方程 d ′ ( ξ ) = ∣ k − f ′ ( ξ ) ∣ 1 + k 2 = 0 d^{\prime }\left ( \xi \right )=\frac{\left | k-f^{\prime } \left ( \xi \right ) \right | }{\sqrt{1+k^{2} } }=0 d(ξ)=1+k2 kf(ξ)=0,可得 f ′ ( ξ ) = k = f ( b ) − f ( a ) b − a f^{\prime } \left ( \xi \right ) =k=\frac{f\left ( b \right )-f\left ( a \right ) }{b-a} f(ξ)=k=baf(b)f(a)
从几何意义出发,同样根据距离函数 d ( t ) d\left ( t \right ) d(t)的分子部分,可以构造函数 φ ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) = f ( x ) − f ( a ) − k ( x − a ) \varphi \left ( x \right )=f\left ( x \right )-f\left ( a \right )-\frac{f\left ( b \right )-f\left ( a \right ) }{b-a}\left ( x-a \right )= f\left ( x \right )-f\left ( a \right )-k\left ( x-a \right ) φ(x)=f(x)f(a)baf(b)f(a)(xa)=f(x)f(a)k(xa), φ ( x ) \varphi \left ( x \right ) φ(x)仍然满足Rolle定理, ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): φ ′ ( ξ ) = 0 \varphi^{\prime } \left ( \xi \right )=0 φ(ξ)=0,代数方法与几何方法实质上殊途同归。

定理4.4 Cauchy中值定理

函数 y = f ( x ) y=f\left ( x \right ) y=f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) ( g ′ ( ξ ) ≠ 0 ) \frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) }=\frac{f\left ( b \right )-f\left ( a \right ) }{g\left ( b \right )-g\left ( a \right ) }\left ( g^{\prime}\left ( \xi \right ) \neq 0 \right ) g(ξ)f(ξ)=g(b)g(a)f(b)f(a)(g(ξ)=0)

联立参数方程:
{ y = f ( t ) x = g ( t ) \left\{\begin{matrix} y=f\left ( t \right ) \\ x=g\left ( t \right ) \end{matrix}\right. {y=f(t)x=g(t)
参考Lagrange中值定理,将距离函数中的纵坐标 y y y替换为参数方程 y = f ( t ) y=f\left ( t \right ) y=f(t),距离函数中的横坐标 x x x替换为参数方程 x = g ( t ) x=g\left ( t \right ) x=g(t),可构造函数 φ ( t ) = f ( t ) − f ( a ) − ( f ( b ) − f ( a ) g ( b ) − g ( a ) ) ( g ( t ) − g ( a ) ) \varphi \left ( t \right )=f\left ( t \right )-f\left ( a \right )-\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{g\left ( b \right )-g\left ( a \right ) } \right ) \left ( g\left ( t \right ) -g\left ( a \right ) \right ) φ(t)=f(t)f(a)(g(b)g(a)f(b)f(a))(g(t)g(a)),后续过程与Lagrange中值定理一致。

一阶导数与单调性的关系

定理4.5

函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I上有定义,且一阶可导,则函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I上单调增加(减少)的充要条件是 ∀ x ∈ I \forall x\in I xI, f ′ ( x ) ≥ 0 ( f ′ ( x ) ≤ 0 ) f^{\prime }\left ( x \right ) \ge 0(f^{\prime }\left ( x \right ) \le 0) f(x)0(f(x)0)
函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I上严格单调增加(严格减少)的充要条件是 ∀ x ∈ I \forall x\in I xI, f ′ ( x ) > 0 ( f ′ ( x ) < 0 ) f^{\prime }\left ( x \right )>0(f^{\prime }\left ( x \right ) < 0) f(x)>0(f(x)<0)

<1>必要性
x > x 0 x>x_{0} x>x0,
引用Lagrange定理, ∃ ξ ∈ I \exists \xi \in I ξI, f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) f\left ( x \right )-f\left ( x_{0} \right ) =f^{\prime }\left ( \xi \right )\left ( x-x_{0} \right ) f(x)f(x0)=f(ξ)(xx0),
又有 ∀ x ∈ I \forall x\in I xI, f ′ ( x ) ≥ 0 f^{\prime }\left ( x \right ) \ge 0 f(x)0,所以 f ′ ( ξ ) ≥ 0 f^{\prime }\left ( \xi \right ) \ge 0 f(ξ)0, f ( x ) − f ( x 0 ) ≥ 0 f\left ( x \right )-f\left ( x_{0} \right ) \ge 0 f(x)f(x0)0, f ( x ) ≥ f ( x 0 ) f\left ( x \right ) \ge f\left ( x_{0} \right ) f(x)f(x0)
<2>充分性
f ( x ) − f ( x 0 ) x − x 0 ≥ 0 \frac{f\left ( x \right )-f\left ( x_{0} \right )}{x-x_{0} }\ge 0 xx0f(x)f(x0)0,
引用函数极限的局部保号性,令 Δ x = x − x 0 \Delta x=x-x_{0} Δx=xx0, lim ⁡ Δ x → 0 f ( x ) − f ( x 0 ) x − x 0 ≥ 0 \lim _{\Delta x\to 0} \frac{f\left ( x \right )-f\left ( x_{0} \right )}{x-x_{0} }\ge 0 limΔx0xx0f(x)f(x0)0,
根据导数的定义, f ′ ( x ) ≥ 0 f^{\prime} \left ( x \right ) \ge 0 f(x)0

二阶导数与凸性的关系

定义4.2 凸性

函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I有定义,若 ∀ x 1 \forall x_{1} x1, x 2 ∈ I x_{2}\in I x2I, ∀ λ ∈ ( 0 , 1 ) \forall \lambda \in \left ( 0,1 \right ) λ(0,1),有 f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f\left ( \lambda x_{1} +\left ( 1-\lambda \right ) x_{2} \right )\le \lambda f\left ( x_{1} \right ) +\left ( 1-\lambda \right )f\left ( x_{2} \right ) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2),则称函数 f ( x ) f\left ( x \right ) f(x)是下凸函数,几何意义为连接区间端点的割线段恒在函数曲线上方。
∀ x 1 \forall x_{1} x1, x 2 ∈ I x_{2}\in I x2I, ∀ λ ∈ ( 0 , 1 ) \forall \lambda \in \left ( 0,1 \right ) λ(0,1),有 f ( λ x 1 + ( 1 − λ ) x 2 ) ≥ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f\left ( \lambda x_{1} +\left ( 1-\lambda \right ) x_{2} \right )\ge \lambda f\left ( x_{1} \right ) +\left ( 1-\lambda \right )f\left ( x_{2} \right ) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2),则称函数 f ( x ) f\left ( x \right ) f(x)是上凸函数,几何意义为连接区间端点的割线段恒在函数曲线上下方。

定理4.6

函数 f ( x ) f\left ( x \right ) f(x)在区间I上二阶可导,函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I上下凸(上凸)的充要条件是 ∀ x ∈ I \forall x\in I xI, f ′ ′ ( x ) ≥ 0 f^{\prime \prime }\left ( x \right )\ge 0 f′′(x)0( f ′ ′ ( x ) ≤ 0 f^{\prime \prime } \left ( x \right ) \le 0 f′′(x)0)。
函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I上严格下凸(上凸)的充要条件是 ∀ x ∈ I \forall x\in I xI, f ′ ′ ( x ) > 0 f^{\prime \prime }\left ( x \right )> 0 f′′(x)>0( f ′ ′ ( x ) < 0 f^{\prime \prime } \left ( x \right ) < 0 f′′(x)<0)。

不妨设函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I上下凸, ∀ x ∈ I \forall x\in I xI, f ′ ′ ( x ) ≤ 0 f^{\prime \prime }\left ( x \right )\le 0 f′′(x)0, x 1 < x 2 x_{1}<x_{2} x1<x2,
<1>必要性
λ = 1 2 \lambda =\frac{1}{2} λ=21, f ( x 1 + x 2 2 ) ≤ f ( x 1 ) + f ( x 2 ) 2 ⇒ f ( x 2 ) − f ( x 1 + x 2 2 ) ≥ f ( x 1 + x 2 2 ) − f ( x 1 ) f\left ( \frac{x_{1}+x_{2}}{2} \right ) \le \frac{f\left ( x_{1} \right ) +f\left ( x_{2} \right ) }{2}\Rightarrow f\left ( x_{2} \right ) -f\left ( \frac{x_{1}+x_{2} }{2} \right )\ge f\left ( \frac{x_{1} +x_{2}}{2} \right )-f\left ( x_{1} \right ) f(2x1+x2)2f(x1)+f(x2)f(x2)f(2x1+x2)f(2x1+x2)f(x1),
Δ x n = ∣ x 2 − x 1 ∣ n = x 2 − x 1 n > 0 \Delta x_{n} =\frac{\left | x_{2}-x_{1} \right | }{n}=\frac{x_{2}-x_{1} }{n}>0 Δxn=nx2x1=nx2x1>0( n ≥ 3 n\ge3 n3),
可抽象出如下递推公式,其中 k ∈ N + k\in \mathbb{N}^{+} kN+, k ∈ [ 2 , n ] k\in \left [ 2,n \right ] k[2,n]:
f ( x 2 ) − f ( x 2 − Δ x n ) ≤ f ( x 2 − Δ x n ) − f ( x 2 − 2 Δ x n ) ⋯ ≤ f ( x 2 − ( k − 2 ) Δ x n ) − f ( x 2 − ( k − 1 ) Δ x n ) ≤ f ( x 2 − ( k − 1 ) Δ x n ) − f ( x 2 − k Δ x n ) ⋯ ≤ f ( x 2 − ( n − 1 ) Δ x n ) − f ( x 2 − n Δ x n ) = f ( x 1 + Δ x n ) − f ( x 1 ) \begin{array}{l} & f\left ( x_{2} \right )-f\left ( x_{2} - \Delta x_{n} \right ) \\ \le & f\left ( x_{2} -\Delta x_{n} \right ) -f\left ( x_{2} -2 \Delta x_{n} \right )\\ \cdots \\ \le & f\left ( x_{2}-\left ( k-2 \right )\Delta x_{n} \right )-f\left ( x_{2}- \left ( k-1 \right )\Delta x_{n} \right ) \\ \le & f\left ( x_{2}-\left ( k-1 \right )\Delta x_{n} \right )-f\left ( x_{2}- k\Delta x_{n} \right )\\ \cdots \\ \le & f\left ( x_{2}-\left ( n-1 \right )\Delta x_{n} \right )-f\left ( x_{2}-n\Delta x_{n} \right ) \\ =& f\left ( x_{1}+\Delta x_{n} \right )-f\left ( x_{1} \right ) \\ \end{array} =f(x2)f(x2Δxn)f(x2Δxn)f(x2xn)f(x2(k2)Δxn)f(x2(k1)Δxn)f(x2(k1)Δxn)f(x2kΔxn)f(x2(n1)Δxn)f(x2nΔxn)f(x1+Δxn)f(x1)
综上所述, f ( x 2 ) − f ( x 2 − Δ x n ) ≤ f ( x 1 + Δ x n ) − f ( x 1 ) f\left ( x_{2} \right )-f\left ( x_{2} - \Delta x_{n} \right ) \le f\left ( x_{1}+\Delta x_{n} \right )-f\left ( x_{1} \right ) f(x2)f(x2Δxn)f(x1+Δxn)f(x1),记为( ∗ \ast ),
对不等式( ∗ \ast )两侧同除以 Δ x n \Delta x_{n} Δxn, f ( x 2 ) − f ( x 2 + ( − Δ x n ) ) − Δ x n ≥ f ( x 1 + Δ x n ) − f ( x 1 ) Δ x n \frac{f\left ( x_{2} \right ) -f\left ( x_{2} +\left ( -\Delta x_{n} \right ) \right ) }{-\Delta x_{n} }\ge \frac{f\left ( x_{1} +\Delta x_{n} \right ) -f\left ( x_{1} \right ) }{\Delta x_{n} } Δxnf(x2)f(x2+(Δxn))Δxnf(x1+Δxn)f(x1),
引用函数极限的局部保号性, lim ⁡ Δ x n → 0 f ( x 2 ) − f ( x 2 + ( − Δ x n ) ) − Δ x n ≥ lim ⁡ Δ x n → 0 f ( x 1 + Δ x n ) − f ( x 1 ) Δ x n \lim _{\Delta x_{n}\to 0 } \frac{f\left ( x_{2} \right ) -f\left ( x_{2} +\left ( -\Delta x_{n} \right ) \right ) }{-\Delta x_{n} }\ge \lim _{\Delta x_{n}\to 0 } \frac{f\left ( x_{1} +\Delta x_{n} \right ) -f\left ( x_{1} \right ) }{\Delta x_{n} } limΔxn0Δxnf(x2)f(x2+(Δxn))limΔxn0Δxnf(x1+Δxn)f(x1),
根据导数定义, f ′ ( x 2 ) ≥ f ′ ( x 1 ) f^{\prime } \left ( x_{2} \right ) \ge f^{\prime } \left ( x_{1} \right ) f(x2)f(x1),
根据函数单调性的定义,函数 f ( x ) f\left ( x \right ) f(x)的一阶导函数 f ′ ( x ) f^{\prime } \left ( x \right ) f(x)单调递增,
引用一阶导数与单调性的关系, ( f ′ ( x ) ) ′ = f ′ ′ ( x ) ≥ 0 \left ( f^{\prime } \left ( x \right ) \right )^{ \prime } =f^{\prime \prime } \left ( x \right )\ge 0 (f(x))=f′′(x)0
<2>充分性
在闭区间 [ x 1 , x 2 ] \left [ x_{1} ,x_{2} \right ] [x1,x2]上任取点 x 0 x_{0} x0, x 0 = λ x 1 + ( 1 − λ ) x 2 x_{0} =\lambda x_{1}+\left ( 1-\lambda \right )x_{2} x0=λx1+(1λ)x2,
x 0 x_{0} x0 x 1 x_{1} x1, x 2 x_{2} x2满足如下的算数关系:
x 0 − x 1 = ( 1 − λ ) ( x 2 − x 1 ) x_{0} -x_{1}=\left ( 1-\lambda \right )\left ( x_{2}-x_{1} \right ) x0x1=(1λ)(x2x1)(A)
x 2 − x 0 = λ ( x 2 − x 1 ) x_{2} -x_{0}= \lambda \left ( x_{2}-x_{1} \right ) x2x0=λ(x2x1)(B)
引用Lagrange中值定理, ∃ ξ 1 ∈ ( x 1 , x 0 ) \exists \xi _{1} \in \left ( x_{1} ,x_{0} \right ) ξ1(x1,x0): f ( x 0 ) − f ( x 1 ) = f ′ ( ξ 1 ) ( x 0 − x 1 ) f\left ( x_{0} \right )-f\left ( x_{1} \right ) =f^{\prime }\left ( \xi _{1} \right )\left ( x_{0} -x_{1} \right ) f(x0)f(x1)=f(ξ1)(x0x1)(1),
∃ ξ 2 ∈ ( x 0 , x 2 ) \exists \xi _{2} \in \left ( x_{0} ,x_{2} \right ) ξ2(x0,x2): f ( x 2 ) − f ( x 0 ) = f ′ ( ξ 2 ) ( x 2 − x 0 ) f\left ( x_{2} \right )-f\left ( x_{0} \right ) =f^{\prime }\left ( \xi _{2} \right )\left ( x_{2} -x_{0} \right ) f(x2)f(x0)=f(ξ2)(x2x0)(2),
(1)变形为 f ( x 1 ) = f ′ ( ξ 1 ) ( x 1 − x 0 ) + f ( x 0 ) f\left ( x_{1} \right )=f^{\prime } \left ( \xi _{1} \right ) \left ( x_{1} -x_{0} \right )+f\left ( x_{0} \right ) f(x1)=f(ξ1)(x1x0)+f(x0)(3),
(2)变形为 f ( x 2 ) = f ′ ( ξ 2 ) ( x 2 − x 0 ) + f ( x 0 ) f\left ( x_{2} \right )=f^{\prime } \left ( \xi _{2} \right ) \left ( x_{2} -x_{0} \right )+f\left ( x_{0} \right ) f(x2)=f(ξ2)(x2x0)+f(x0)(4),
根据一阶导数与单调性的关系,函数 f ( x ) f\left ( x \right ) f(x)的一阶导函数 f ′ ( x ) f^{\prime } \left ( x \right ) f(x)单调递增,
根据函数单调性定义, f ′ ( x 1 ) ≤ f ′ ( ξ 1 ) ≤ f ′ ( x 0 ) ≤ f ′ ( ξ 2 ) ≤ f ′ ( x 2 ) f^{\prime } \left ( x_{1} \right ) \le f^{\prime } \left ( \xi _{1} \right )\le f^{\prime } \left ( x_{0 } \right )\le f^{\prime } \left ( \xi _{2} \right )\le f^{\prime } \left ( x_{2} \right ) f(x1)f(ξ1)f(x0)f(ξ2)f(x2),
(3) ⇒ f ( x 1 ) − f ( x 0 ) ≥ f ′ ( x 0 ) ( x 1 − x 0 ) ≥ f ′ ( ξ 1 ) ( x 1 − x 0 ) \Rightarrow f\left ( x_{1} \right ) -f\left ( x_{0} \right )\ge f^{\prime } \left ( x_{0} \right )\left ( x_{1}-x_{0} \right ) \ge f^{\prime }\left ( \xi _{1} \right ) \left ( x_{1}-x_{0} \right ) f(x1)f(x0)f(x0)(x1x0)f(ξ1)(x1x0)(5),
(4) ⇒ f ( x 2 ) − f ( x 0 ) ≥ f ′ ( x 0 ) ( x 2 − x 0 ) ≥ f ′ ( ξ 2 ) ( x 2 − x 0 ) \Rightarrow f\left ( x_{2} \right ) -f\left ( x_{0} \right )\ge f^{\prime } \left ( x_{0} \right )\left ( x_{2}-x_{0} \right ) \ge f^{\prime }\left ( \xi _{2} \right ) \left ( x_{2}-x_{0} \right ) f(x2)f(x0)f(x0)(x2x0)f(ξ2)(x2x0)(6),
根据(A)展开(5),可得 f ( x 1 ) − f ( x 0 ) ≥ − ( 1 − λ ) f ′ ( x 0 ) ( x 2 − x 1 ) f\left ( x_{1} \right ) -f\left ( x_{0} \right )\ge -\left ( 1-\lambda \right ) f^{\prime }\left ( x_{0} \right )\left ( x_{2}-x_{1} \right ) f(x1)f(x0)(1λ)f(x0)(x2x1)(7),
根据(B)展开(6),可得 f ( x 2 ) − f ( x 0 ) ≥ λ f ′ ( x 0 ) ( x 2 − x 1 ) f\left ( x_{2} \right ) -f\left ( x_{0} \right )\ge \lambda f^{\prime }\left ( x_{0} \right )\left ( x_{2}-x_{1} \right ) f(x2)f(x0)λf(x0)(x2x1)(8),
(7)乘以 λ \lambda λ,(8)乘以 1 − λ 1-\lambda 1λ,随后二者相加,得 λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) ≥ f ( x 0 ) = f ( λ x 1 + ( 1 − λ ) x 2 ) \lambda f\left ( x_{1} \right )+\left ( 1-\lambda \right )f\left ( x_{2} \right )\ge f\left ( x_{0} \right )=f\left ( \lambda x_{1} +\left ( 1-\lambda \right ) x_{2} \right ) λf(x1)+(1λ)f(x2)f(x0)=f(λx1+(1λ)x2)

定义4.3 拐点

设函数 f ( x ) f\left ( x \right ) f(x)在点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))的邻域 U ˚ ( x 0 , δ ) \mathring {U}\left ( x_{0},\delta \right ) U˚(x0,δ)上二阶可导,且函数 f ′ ′ ( x 0 ) f^{\prime \prime } \left ( x_{0} \right ) f′′(x0)在点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))的左邻域 ( x 0 − δ , x 0 ) \left ( x_{0}-\delta ,x_{0} \right ) (x0δ,x0),右邻域 ( x 0 , x 0 + δ ) \left ( x_{0},x_{0}+\delta \right ) (x0,x0+δ)上异号,则称点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))是函数 f ( x ) f\left ( x \right ) f(x)的拐点。
几何意义为函数 f ( x ) f\left ( x \right ) f(x)的曲线的凹凸分界点,过拐点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))的切线会穿过函数 f ( x ) f\left ( x \right ) f(x)的图像。

定理4.7

若点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))是函数 f ( x ) f\left ( x \right ) f(x)的拐点,且函数 f ( x ) f\left ( x \right ) f(x)在点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))的邻域 U ˚ ( x 0 , δ ) \mathring {U}\left ( x_{0},\delta \right ) U˚(x0,δ)上二阶可导,则 f ′ ′ ( x 0 ) = 0 f^{\prime \prime } \left ( x_{0} \right )=0 f′′(x0)=0

设函数 f ′ ′ ( x 0 ) f^{\prime \prime } \left ( x_{0} \right ) f′′(x0)在点 ( x 0 , f ( x 0 ) ) \left ( x_{0},f\left ( x_{0} \right ) \right ) (x0,f(x0))的左邻域 ( x 0 − δ , x 0 ) \left ( x_{0}-\delta ,x_{0} \right ) (x0δ,x0)下凸,在右邻域 ( x 0 , x 0 + δ ) \left ( x_{0},x_{0}+\delta \right ) (x0,x0+δ)上凸,
根据定理4.6, ∀ x ∈ ( x 0 − δ , x 0 ) \forall x\in \left ( x_{0} -\delta ,x_{0} \right ) x(x0δ,x0), f ′ ′ ( x 0 ) ≥ 0 f^{\prime \prime }\left ( x_{0} \right ) \ge 0 f′′(x0)0, ∀ x ∈ ( x 0 , x 0 + δ ) \forall x\in \left ( x_{0} ,x_{0} +\delta \right ) x(x0,x0+δ), f ′ ′ ( x 0 ) ≤ 0 f^{\prime \prime }\left ( x_{0} \right ) \le 0 f′′(x0)0,
根据定理4.5,一阶导数 f ′ ( x 0 ) f^{\prime }\left ( x_{0} \right ) f(x0)在左邻域 ( x 0 − δ , x 0 ) \left ( x_{0}-\delta ,x_{0} \right ) (x0δ,x0)单调增加,在右邻域 ( x 0 , x 0 + δ ) \left ( x_{0},x_{0}+\delta \right ) (x0,x0+δ)单调减少, x 0 x_{0} x0 f ′ ( x ) f^{\prime } \left ( x \right ) f(x)的一个极大值点,
引用Fermat引理, f ′ ′ ( x 0 ) = 0 f^{\prime \prime } \left ( x_{0} \right )=0 f′′(x0)=0

定理4.8 Jensen不等式

函数 f ( x ) f\left ( x \right ) f(x)在区间 I I I下凸, ∀ i ∈ N + \forall i\in \mathbb{N}^{+} iN+, x i ∈ I x_{i}\in I xiI, λ i ∈ ( 0 , 1 ) \lambda _{i} \in \left ( 0,1 \right ) λi(0,1)( ∑ λ i = 1 \sum \lambda _{i} =1 λi=1), f ( ∑ ( λ i x i ) ) ≤ ∑ ( λ i f ( x i ) ) f\left ( \sum \left ( \lambda _{i}x_{i} \right ) \right ) \le \sum \left ( \lambda _{i}f\left ( x_{i} \right ) \right ) f((λixi))(λif(xi))

  • 19
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值