索引
微分中值定理
极值
定义4.1 极大(小)值
若存在 x 0 x_{0} x0的邻域 U ( x 0 , δ ) U\left ( x_{0}, \delta \right ) U(x0,δ),使得 ∀ x ∈ U ( x 0 ) , δ \forall x\in U\left ( x_{0}\right), \delta ∀x∈U(x0),δ, f ( x ) ≤ f ( x 0 ) f\left(x\right ) \le f\left(x_{0}\right ) f(x)≤f(x0),则称 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点。
若存在 x 0 x_{0} x0的邻域 U ( x 0 , δ ) U\left ( x_{0}, \delta \right ) U(x0,δ),使得 ∀ x ∈ U ( x 0 ) , δ \forall x\in U\left ( x_{0}\right), \delta ∀x∈U(x0),δ, f ( x ) ≥ f ( x 0 ) f\left(x\right ) \ge f\left(x_{0}\right ) f(x)≥f(x0),则称 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极小值点。
定理4.1 Fermat引理
设 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极值点,且函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处可导,则 f ′ ( x 0 ) = 0 f^{\prime }\left ( x_{0} \right )=0 f′(x0)=0。
不妨设 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点。
令 x ∈ ( x 0 , x 0 + δ ) x\in \left ( x_{0},x_{0}+\delta \right ) x∈(x0,x0+δ),则 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≤ 0 \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x} \le 0 Δxf(x0+Δx)−f(x0)≤0,
根据函数极限的保不等号性, f + ′ ( x 0 ) = lim x 0 + → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≤ 0 f^{\prime } _{+}\left ( x_{0} \right ) =\lim_{x_{0}^{+} \to 0} \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x}\le 0 f+′(x0)=limx0+→0Δxf(x0+Δx)−f(x0)≤0;
同理令 x ∈ ( x 0 − δ , x 0 ) x\in \left ( x_{0}-\delta,x_{0}\right ) x∈(x0−δ,x0),则 f − ′ ( x 0 ) = lim x 0 − → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≥ 0 f^{\prime } _{-}\left ( x_{0} \right ) =\lim_{x_{0}^{-} \to 0} \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x}\ge 0 f−′(x0)=limx0−→0Δxf(x0+Δx)−f(x0)≥0,
因为函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处可导,所以函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处 f + ′ ( x 0 ) = f − ′ ( x 0 ) = f ′ ( x 0 ) = 0 f^{\prime } _{+}\left ( x_{0} \right ) =f^{\prime } _{-}\left ( x_{0} \right ) =f^{\prime }\left ( x_{0} \right )=0 f+′(x0)=f−′(x0)=f′(x0)=0。
定理4.2 Rolle定理
函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导, f ( a ) = f ( b ) f\left ( a \right )=f\left ( b \right ) f(a)=f(b),则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ∃ξ∈(a,b): f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f′(ξ)=0。
根据最值定理, f ( x ) f\left ( x \right ) f(x)在 [ a , b ] \left [ a,b \right ] [a,b]上必有最大值 M M M和最小值 m m m,也就是 ∃ η \exists \eta ∃η, ξ ∈ [ a , b ] \xi \in \left [ a,b \right ] ξ∈[a,b]: ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] ∀x∈[a,b], f ( η ) = m = min f ( x ) f\left ( \eta \right )=m= \min f\left ( x \right ) f(η)=m=minf(x), f ( ξ ) = M = max f ( x ) f\left ( \xi \right )=M=\max f\left ( x \right ) f(ξ)=M=maxf(x)。
<1> M = m M=m M=m
此时函数 f ( x ) f\left ( x \right ) f(x)为常数函数,显然 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ∃ξ∈(a,b): f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f′(ξ)=0。
<2> M > m M> m M>m
此时 M = f ( ξ ) M=f\left ( \xi \right ) M=f(ξ)为 f ( x ) f\left ( x \right ) f(x)在 [ a , b ] \left [ a,b \right ] [a,b]上的一个极大值, ξ \xi ξ是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点,
根据Fermat引理, f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f′(ξ)=0。
Lagrange中值定理
定理4.3 Lagrange中值定理
函数 y = f ( x ) y=f\left ( x \right ) y=f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ∃ξ∈(a,b): f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{\prime } \left ( \xi \right )=\frac{f\left ( b\right ) -f\left ( a \right ) }{b-a} f′(ξ)=b−af(b)−f(a)。
任取 x ∈ ( a , b ) x \in \left ( a,b \right ) x∈(a,b), x = t x=t x=t处切线斜率为 f ′ ( t ) f^{\prime } \left ( t \right ) f′(t)。
另外连接闭区间 [ a , b ] \left [ a,b \right ] [a,b]端点的割线斜率为 k = f ( b ) − f ( a ) b − a k=\frac{f\left ( b \right )-f\left ( a \right ) }{b-a} k=b−af(b)−f(a),割线方程为 y − f ( a ) = ( f ( b ) − f ( a ) b − a ) ( x − a ) y-f\left ( a \right )=\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{b-a} \right )\left ( x-a \right ) y−f(a)=(b−af(b)−f(a))(x−a),
而点 ( t , f ( t ) ) \left (t ,f\left (t \right ) \right ) (t,f(t))到割线 y = ( f