中值定理中辅助函数的构造方法

中值定理中辅助函数的构造方法

1. 还原法

这种方法类似上面的采用微分方程的解题思路。但是存在一点微小的区别
,这里面主要采用将 y y y y ′ y^{'} y划在一起,变成 f ′ ( x ) f ( x ) \frac{f^{\prime}(x)}{f(x)} f(x)f(x)的形式,而正好 [ ln ⁡ f ( x ) ] ′ = f ′ ( x ) f ( x ) [\ln f(x)]^{\prime}=\frac{f^{\prime}(x)}{f(x)} [lnf(x)]=f(x)f(x)

例一:设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上二阶可导,且 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),证明:存在 ξ ∈ ( 0 , 1 ) \xi \in(0,1) ξ(0,1),使得
f ′ ′ ( ξ ) = 2 f ′ ( ξ ) 1 − ξ f^{\prime \prime}(\xi)=\frac{2 f^{\prime}(\xi)}{1-\xi} f(ξ)=1ξ2f(ξ)

分析:将 f ′ ′ ( ξ ) = 2 f ′ ( ξ ) 1 − ξ f^{\prime \prime}(\xi)=\frac{2 f^{\prime}(\xi)}{1-\xi} f(ξ)=1ξ2f(ξ)改写为 f ′ ′ ( x ) = 2 f ′ ( x ) 1 − x f^{\prime \prime}(x)=\frac{2 f^{\prime}(x)}{1-x} f(x)=1x2f(x),进一步化为 f ′ ′ ( x ) f ′ ( x ) + 2 x − 1 = 0 \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}+\frac{2}{x-1}=0 f(x)f(x)+x12=0,还原为 [ ln ⁡ f ′ ( x ) ] ′ + [ ln ⁡ ( x − 1 ) 2 ] ′ = 0 \left[\ln f^{\prime}(x)\right]^{\prime}+\left[\ln (x-1)^{2}\right]^{\prime}=0 [lnf(x)]+[ln(x1)2]=0,辅助函数构造为
φ ( x ) = ( x − 1 ) 2 f ′ ( x ) \varphi(x)=(x-1)^{2} f^{\prime}(x) φ(x)=(x1)2f(x)

证明:令 φ ( x ) = ( x − 1 ) 2 f ′ ( x ) , φ ( 1 ) = 0 \varphi(x)=(x-1)^{2} f^{\prime}(x), \varphi(1)=0 φ(x)=(x1)2f(x),φ(1)=0
因为 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),所以由罗尔定理,存在 c ∈ ( 0 , 1 ) c \in(0,1) c(0,1),使得 f ′ ( c ) = 0 f^{\prime}(c)=0 f(c)=0,于是 φ ( c ) = 0 \varphi(c)=0 φ(c)=0
因为 φ ( c ) = φ ( 1 ) = 0 \varphi(c)=\varphi(1)=0 φ(c)=φ(1)=0,所以由罗尔定理,存在 ξ ∈ ( c , 1 ) ⊂ ( 0 , 1 ) \xi \in(c, 1) \subset(0,1) ξ(c,1)(0,1),使得 φ ′ ( ξ ) = 0 \varphi^{\prime}(\xi)=0 φ(ξ)=0,于是
f ′ ′ ( ξ ) = 2 f ′ ( ξ ) 1 − ξ f^{\prime \prime}(\xi)=\frac{2 f^{\prime}(\xi)}{1-\xi} f(ξ)=1ξ2f(ξ)

2. 分组构造法

其实这种方法也可以用微分方程来解决,但是因为这里面有一些是一阶非齐次的,所以解起来很麻烦,可以尝试这种方法,所谓分组构造法,就是将所证的结论进行适当的分组,则辅助函数构造如下:
1.若所证结论为 f ′ ( ξ ) − f ( ξ ) + 2 ξ = 2 f^{\prime}(\xi)-f(\xi)+2 \xi=2 f(ξ)f(ξ)+2ξ=2,则辅助函数构造如下:
(1)将 f ′ ( ξ ) − f ( ξ ) + 2 ξ = 2 f^{\prime}(\xi)-f(\xi)+2 \xi=2 f(ξ)f(ξ)+2ξ=2改写为 f ′ ( x ) − f ( x ) + 2 x = 2 f^{\prime}(x)-f(x)+2 x=2 f(x)f(x)+2x=2
(2)将 f ′ ( x ) − f ( x ) + 2 x = 2 f^{\prime}(x)-f(x)+2 x=2 f(x)f(x)+2x=2分组为 [ f ( x ) − 2 x ] ′ − [ f ( x ) − 2 x ] = 0 [f(x)-2 x]^{\prime}-[f(x)-2 x]=0 [f(x)2x][f(x)2x]=0
则辅助函数为 φ ( x ) = e − x [ f ( x ) − 2 x ] \varphi(x)=\mathrm{e}^{-x}[f(x)-2 x] φ(x)=ex[f(x)2x]

2.若所证结论为 f ′ ′ ( ξ ) − f ( ξ ) = 0 f^{\prime \prime}(\xi)-f(\xi)=0 f(ξ)f(ξ)=0,则辅助函数构造如下:
(1)将 f ′ ′ ( ξ ) − f ( ξ ) = 0 f^{\prime \prime}(\xi)-f(\xi)=0 f(ξ)f(ξ)=0改写为 f ′ ′ ( x ) − f ( x ) = 0 f^{\prime \prime}(x)-f(x)=0 f(x)f(x)=0
(2)将 f ′ ′ ( x ) − f ( x ) = 0 f^{\prime \prime}(x)-f(x)=0 f(x)f(x)=0分组为 f ′ ′ ( x ) + f ′ ( x ) − f ′ ( x ) − f ( x ) = 0 f^{\prime \prime}(x)+f^{\prime}(x)-f^{\prime}(x)-f(x)=0 f(x)+f(x)f(x)f(x)=0,即 [ f ′ ( x ) + f ( x ) ] ′ − [ f ′ ( x ) + f ( x ) ] = 0 \left[f^{\prime}(x)+f(x)\right]^{\prime}-\left[f^{\prime}(x)+f(x)\right]=0 [f(x)+f(x)][f(x)+f(x)]=0,辅助函数为
φ ( x ) = e − x [ f ′ ( x ) + f ( x ) ] \varphi(x)=\mathrm{e}^{-x}\left[f^{\prime}(x)+f(x)\right] φ(x)=ex[f(x)+f(x)]
同样,根据加减法的不同也可以构造为 φ ( x ) = e x [ f ′ ( x ) − f ( x ) ] \varphi(x)=\mathrm{e}^{x}\left[f^{\prime}(x)-f(x)\right] φ(x)=ex[f(x)f(x)]

  1. 若所证结论为 f ′ ′ ( ξ ) + f ′ ( ξ ) = 2 f^{\prime \prime}(\xi)+f^{\prime}(\xi)=2 f(ξ)+f(ξ)=2,则辅助函数构造如下:
    (1)将 f ′ ′ ( ξ ) + f ′ ( ξ ) = 2 f^{\prime \prime}(\xi)+f^{\prime}(\xi)=2 f(ξ)+f(ξ)=2改写为 f ′ ′ ( x ) + f ′ ( x ) = 2 f^{\prime \prime}(x)+f^{\prime}(x)=2 f(x)+f(x)=2
    (2)将 f ′ ′ ( x ) + f ′ ( x ) = 2 f^{\prime \prime}(x)+f^{\prime}(x)=2 f(x)+f(x)=2分组为 [ f ′ ( x ) − 2 ] ′ + [ f ′ ( x ) − 2 ] = 0 \left[f^{\prime}(x)-2\right]^{\prime}+\left[f^{\prime}(x)-2\right]=0 [f(x)2]+[f(x)2]=0
    则辅助函数为 φ ( x ) = e x [ f ′ ( x ) − 2 ] \varphi(x)=\mathrm{e}^{x}\left[f^{\prime}(x)-2\right] φ(x)=ex[f(x)2]

例题一:设 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b],则在 ( a , b ) (a,b) (a,b)内二阶可导, f ( a ) = f ( b ) = 0 , f ′ + ( a ) f ′ − ( b ) > 0 f(a)=f(b)=0, f^{\prime}+(a) f^{\prime}-(b)>0 f(a)=f(b)=0,f+(a)f(b)>0
(1)证明:存在 ξ 1 , ξ 2 ∈ ( a , b ) ( ξ 1 < ξ 2 ) \xi_{1}, \xi_{2} \in(a, b)\left(\xi_{1}<\xi_{2}\right) ξ1,ξ2(a,b)(ξ1<ξ2),使得
f ( ξ 1 ) + f ′ ( ξ 1 ) = 0 , f ( ξ 2 ) + f ′ ( ξ 2 ) = 0 f\left(\xi_{1}\right)+f^{\prime}\left(\xi_{1}\right)=0, f\left(\xi_{2}\right)+f^{\prime}\left(\xi_{2}\right)=0 f(ξ1)+f(ξ1)=0,f(ξ2)+f(ξ2)=0
(2)证明:存在 η 1 , η 2 ∈ ( a , b ) ( η 1 < η 2 ) \eta_{1}, \eta_{2} \in(a, b)\left(\eta_{1}<\eta_{2}\right) η1,η2(a,b)(η1<η2),使得
f ′ ( η 1 ) − f ( η 1 ) = 0 , f ′ ( η 2 ) − f ( η 2 ) = 0 f^{\prime}\left(\eta_{1}\right)-f\left(\eta_{1}\right)=0, f^{\prime}\left(\eta_{2}\right)-f\left(\eta_{2}\right)=0 f(η1)f(η1)=0,f(η2)f(η2)=0
(3)证明:存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f ′ ′ ( ξ ) = f ( ξ ) f^{\prime \prime}(\xi)=f(\xi) f(ξ)=f(ξ)
(4)证明:存在 η ∈ ( a , b ) \eta \in(a, b) η(a,b),使得 f ′ ′ ( η ) − 3 f ′ ( η ) + 2 f ( η ) = 0 f^{\prime \prime}(\eta)-3 f^{\prime}(\eta)+2 f(\eta)=0 f(η)3f(η)+2f(η)=0

证明
(1)不妨设 f + ′ ( a ) > 0 , f − ′ ( b ) > 0 f^{\prime}_{+}(a)>0, f^{\prime}_{-}(b)>0 f+(a)>0,f(b)>0,则存在 c 1 ∈ ( a , b ) , c 2 ∈ ( a , b ) c_{1} \in(a, b), c_{2} \in(a, b) c1(a,b),c2(a,b),使得
f ( c 1 ) > f ( a ) = 0 , f ( c 2 ) < f ( b ) = 0 f\left(c_{1}\right)>f(a)=0, \quad f\left(c_{2}\right)<f(b)=0 f(c1)>f(a)=0,f(c2)<f(b)=0
φ ( x ) = e x f ( x ) \varphi(x)=\mathrm{e}^{x} f(x) φ(x)=exf(x),因为 f ( a ) = f ( c ) = f ( b ) = 0 f(a)=f(c)=f(b)=0 f(a)=f(c)=f(b)=0,所以 φ ( a ) = φ ( c ) = φ ( b ) = 0 \varphi(a)=\varphi(c)=\varphi(b)=0 φ(a)=φ(c)=φ(b)=0,由罗尔定理,存在存在 ξ 1 , ξ 2 ∈ ( a , b ) ( ξ 1 < ξ 2 ) \xi_{1}, \xi_{2} \in(a, b)\left(\xi_{1}<\xi_{2}\right) ξ1,ξ2(a,b)(ξ1<ξ2),使得 φ ′ ( ξ 1 ) = φ ′ ( ξ 2 ) = 0 \varphi^{\prime}\left(\xi_{1}\right)=\varphi^{\prime}\left(\xi_{2}\right)=0 φ(ξ1)=φ(ξ2)=0

(2)令 φ ( x ) = e − x f ( x ) \varphi(x)=\mathrm{e}^{-x} f(x) φ(x)=exf(x),因为 f ( a ) = f ( c ) = f ( b ) = 0 f(a)=f(c)=f(b)=0 f(a)=f(c)=f(b)=0,所以 φ ( a ) = φ ( c ) = φ ( b ) = 0 \varphi(a)=\varphi(c)=\varphi(b)=0 φ(a)=φ(c)=φ(b)=0,由罗尔定理,存在 η 1 ∈ ( a , c ) , η 2 ∈ ( c , b ) \eta_{1} \in(a, c), \eta_{2} \in(c, b) η1(a,c),η2(c,b),使得 φ ′ ( η 1 ) = φ ′ ( η 2 ) = 0 \varphi^{\prime}\left(\eta_{1}\right)=\varphi^{\prime}\left(\eta_{2}\right)=0 φ(η1)=φ(η2)=0
φ ′ ( x ) = e − x [ f ′ ( x ) − f ( x ) ] \varphi^{\prime}(x)=\mathrm{e}^{-x}\left[f^{\prime}(x)-f(x)\right] φ(x)=ex[f(x)f(x)] e − x ≠ 0 \mathrm{e}^{-x} \neq 0 ex=0,故 f ′ ( η 1 ) − f ( η 1 ) = 0 , f ′ ( η 2 ) − f ( η 2 ) = 0 f^{\prime}\left(\eta_{1}\right)-f\left(\eta_{1}\right)=0, f^{\prime}\left(\eta_{2}\right)-f\left(\eta_{2}\right)=0 f(η1)f(η1)=0,f(η2)f(η2)=0

(3)令 h ( x ) = e − x [ f ′ ( x ) + f ( x ) ] h(x)=\mathrm{e}^{-x}\left[f^{\prime}(x)+f(x)\right] h(x)=ex[f(x)+f(x)],因为 h ( ξ 1 ) = h ( ξ 2 ) = 0 h\left(\xi_{1}\right)=h\left(\xi_{2}\right)=0 h(ξ1)=h(ξ2)=0,所以存在 ξ ∈ ( ξ 1 , ξ 2 ) \xi \in\left(\xi_{1}, \xi_{2}\right) ξ(ξ1,ξ2),使得 h ′ ( ξ ) = 0 h^{\prime}(\xi)=0 h(ξ)=0,而 h ′ ( x ) = e − x [ f ′ ′ ( x ) − f ( x ) ] h^{\prime}(x)=\mathrm{e}^{-x}\left[f^{\prime \prime}(x)-f(x)\right] h(x)=ex[f(x)f(x)] e − x ≠ 0 e^{-x} \neq 0 ex=0,于是 f ′ ′ ( ξ ) = f ( ξ ) f^{\prime \prime}(\xi)=f(\xi) f(ξ)=f(ξ)

(4)令 h ( x ) = e − 2 x [ f ′ ( x ) − f ( x ) ] h(x)=\mathrm{e}^{-2 x}\left[f^{\prime}(x)-f(x)\right] h(x)=e2x[f(x)f(x)],因为 h ( η 1 ) = h ( η 2 ) = 0 h\left(\eta_{1}\right)=h\left(\eta_{2}\right)=0 h(η1)=h(η2)=0,所以由罗尔定理,存在 η ∈ ( η 1 , η 2 ) ⊂ ( a , b ) \eta \in \left(\eta_{1}, \eta_{2}\right) \subset(a, b) η(η1,η2)(a,b),使得 h ′ ( η ) = 0 h^{\prime}(\eta)=0 h(η)=0
h ′ ( x ) = e − 2 x [ f ′ ′ ( x ) − 3 f ′ ( x ) + 2 f ( x ) ] h^{\prime}(x)=\mathrm{e}^{-2 x}\left[f^{\prime \prime}(x)-3 f^{\prime}(x)+2 f(x)\right] h(x)=e2x[f(x)3f(x)+2f(x)] e − 2 x ≠ 0 \mathrm{e}^{-2 x} \neq 0 e2x=0,故 f ′ ′ ( η ) − 3 f ′ ( η ) + 2 f ( η ) = 0 f^{\prime \prime}(\eta)-3 f^{\prime}(\eta)+2 f(\eta)=0 f(η)3f(η)+2f(η)=0

3. 凑微分

所谓凑微分方法构造辅助函数,即先将结论中的 ξ \xi ξ变成 x x x,再去分母、移项。整理成 g ( x ) = 0 g(x)=0 g(x)=0,再找出 φ ′ ( x ) = g ( x ) \varphi^{\prime}(x)=g(x) φ(x)=g(x),则 φ ( x ) \varphi(x) φ(x)即为辅助函数

例题一:设 f ( x ) , g ( x ) f(x) , g(x) f(x)g(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)上可导, g ( x ) ≠ 0 , g ′ ′ ( x ) ≠ 0 ( a < x < b ) g(x) \neq 0, g^{\prime \prime}(x) \neq 0(a<x<b) g(x)=0,g(x)=0(a<x<b),且 f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 f(a)=f(b)=g(a)=g(b)=0 f(a)=f(b)=g(a)=g(b)=0,证明:存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} g(ξ)f(ξ)=g(ξ)f(ξ)

分析:将 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} g(ξ)f(ξ)=g(ξ)f(ξ)改写为 f ( x ) g ( x ) = f ′ ′ ( x ) g ′ ′ ( x ) \frac{f(x)}{g(x)}=\frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} g(x)f(x)=g(x)f(x),整理得 f ( x ) g ′ ′ ( x ) − f ′ ′ ( x ) g ( x ) = 0 f(x) g^{\prime \prime}(x)-f^{\prime \prime}(x) g(x)=0 f(x)g(x)f(x)g(x)=0,还原得 [ f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) ] ′ = 0 \left[f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right]^{\prime}=0 [f(x)g(x)f(x)g(x)]=0,辅助函数为 φ ( x ) = f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) \varphi(x)=f(x) g^{\prime}(x)-f^{\prime}(x) g(x) φ(x)=f(x)g(x)f(x)g(x)

证明:令 φ ( x ) = f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) , φ ( a ) = φ ( b ) = 0 \varphi(x)=f(x) g^{\prime}(x)-f^{\prime}(x) g(x), \varphi(a)=\varphi(b)=0 φ(x)=f(x)g(x)f(x)g(x),φ(a)=φ(b)=0
由罗尔定理,存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 φ ′ ( ξ ) = 0 \varphi^{\prime}(\xi)=0 φ(ξ)=0,而 φ ′ ( x ) = f ( x ) g ′ ′ ( x ) − f ′ ′ ( x ) g ( x ) \varphi^{\prime}(x)=f(x) g^{\prime \prime}(x)-f^{\prime \prime}(x) g(x) φ(x)=f(x)g(x)f(x)g(x) g ( x ) ≠ 0 , g ′ ′ ( x ) ≠ 0 ( a < x < b ) g(x) \neq 0, g^{\prime \prime}(x) \neq 0(a<x<b) g(x)=0,g(x)=0(a<x<b),所以 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} g(ξ)f(ξ)=g(ξ)f(ξ)

  • 30
    点赞
  • 91
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值