中值定理中辅助函数的构造方法
1. 还原法
这种方法类似上面的采用微分方程的解题思路。但是存在一点微小的区别
,这里面主要采用将 y y y与 y ′ y^{'} y′划在一起,变成 f ′ ( x ) f ( x ) \frac{f^{\prime}(x)}{f(x)} f(x)f′(x)的形式,而正好 [ ln f ( x ) ] ′ = f ′ ( x ) f ( x ) [\ln f(x)]^{\prime}=\frac{f^{\prime}(x)}{f(x)} [lnf(x)]′=f(x)f′(x)
例一:设 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上二阶可导,且 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),证明:存在 ξ ∈ ( 0 , 1 ) \xi \in(0,1) ξ∈(0,1),使得
f ′ ′ ( ξ ) = 2 f ′ ( ξ ) 1 − ξ f^{\prime \prime}(\xi)=\frac{2 f^{\prime}(\xi)}{1-\xi} f′′(ξ)=1−ξ2f′(ξ)
分析:将 f ′ ′ ( ξ ) = 2 f ′ ( ξ ) 1 − ξ f^{\prime \prime}(\xi)=\frac{2 f^{\prime}(\xi)}{1-\xi} f′′(ξ)=1−ξ2f′(ξ)改写为 f ′ ′ ( x ) = 2 f ′ ( x ) 1 − x f^{\prime \prime}(x)=\frac{2 f^{\prime}(x)}{1-x} f′′(x)=1−x2f′(x),进一步化为 f ′ ′ ( x ) f ′ ( x ) + 2 x − 1 = 0 \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}+\frac{2}{x-1}=0 f′(x)f′′(x)+x−12=0,还原为 [ ln f ′ ( x ) ] ′ + [ ln ( x − 1 ) 2 ] ′ = 0 \left[\ln f^{\prime}(x)\right]^{\prime}+\left[\ln (x-1)^{2}\right]^{\prime}=0 [lnf′(x)]′+[ln(x−1)2]′=0,辅助函数构造为
φ ( x ) = ( x − 1 ) 2 f ′ ( x ) \varphi(x)=(x-1)^{2} f^{\prime}(x) φ(x)=(x−1)2f′(x)
证明:令 φ ( x ) = ( x − 1 ) 2 f ′ ( x ) , φ ( 1 ) = 0 \varphi(x)=(x-1)^{2} f^{\prime}(x), \varphi(1)=0 φ(x)=(x−1)2f′(x),φ(1)=0
因为 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),所以由罗尔定理,存在 c ∈ ( 0 , 1 ) c \in(0,1) c∈(0,1),使得 f ′ ( c ) = 0 f^{\prime}(c)=0 f′(c)=0,于是 φ ( c ) = 0 \varphi(c)=0 φ(c)=0
因为 φ ( c ) = φ ( 1 ) = 0 \varphi(c)=\varphi(1)=0 φ(c)=φ(1)=0,所以由罗尔定理,存在 ξ ∈ ( c , 1 ) ⊂ ( 0 , 1 ) \xi \in(c, 1) \subset(0,1) ξ∈(c,1)⊂(0,1),使得 φ ′ ( ξ ) = 0 \varphi^{\prime}(\xi)=0 φ′(ξ)=0,于是
f ′ ′ ( ξ ) = 2 f ′ ( ξ ) 1 − ξ f^{\prime \prime}(\xi)=\frac{2 f^{\prime}(\xi)}{1-\xi} f′′(ξ)=1−ξ2f′(ξ)
2. 分组构造法
其实这种方法也可以用微分方程来解决,但是因为这里面有一些是一阶非齐次的,所以解起来很麻烦,可以尝试这种方法,所谓分组构造法,就是将所证的结论进行适当的分组,则辅助函数构造如下:
1.若所证结论为 f ′ ( ξ ) − f ( ξ ) + 2 ξ = 2 f^{\prime}(\xi)-f(\xi)+2 \xi=2 f′(ξ)−f(ξ)+2ξ=2,则辅助函数构造如下:
(1)将 f ′ ( ξ ) − f ( ξ ) + 2 ξ = 2 f^{\prime}(\xi)-f(\xi)+2 \xi=2 f′(ξ)−f(ξ)+2ξ=2改写为 f ′ ( x ) − f ( x ) + 2 x = 2 f^{\prime}(x)-f(x)+2 x=2 f′(x)−f(x)+2x=2
(2)将 f ′ ( x ) − f ( x ) + 2 x = 2 f^{\prime}(x)-f(x)+2 x=2