解Riccati方程
Riccati方程是一种非线性微分方程,常用于控制理论和系统分析中。它的一般形式可以表示为:
[ \dot{P}(t) = A^T P(t) + P(t) A - P(t) B R^{-1} B^T P(t) + Q ]
其中,( \dot{P}(t) ) 表示P(t)对时间的导数,( A )、( B ) 和 ( Q ) 是已知的矩阵,( R ) 是正定的对称矩阵。
在本文中,我们将介绍如何使用MATLAB来求解Riccati方程的数值解。我们将使用MATLAB中的控制系统工具箱中的函数 care
来求解Riccati方程。
首先,我们需要定义已知的矩阵 ( A )、( B )、( Q ) 和 ( R )。假设它们分别为:
A = [1 2; 3 4]