解Riccati方程

130 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用MATLAB的控制系统工具箱求解Riccati方程,这是一种常见的非线性微分方程,在控制理论和系统分析中有应用。通过定义矩阵A、B、Q和正定对称矩阵R,利用特定函数可以计算出Riccati方程的数值解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解Riccati方程

Riccati方程是一种非线性微分方程,常用于控制理论和系统分析中。它的一般形式可以表示为:

[ \dot{P}(t) = A^T P(t) + P(t) A - P(t) B R^{-1} B^T P(t) + Q ]

其中,( \dot{P}(t) ) 表示P(t)对时间的导数,( A )、( B ) 和 ( Q ) 是已知的矩阵,( R ) 是正定的对称矩阵。

在本文中,我们将介绍如何使用MATLAB来求解Riccati方程的数值解。我们将使用MATLAB中的控制系统工具箱中的函数 care 来求解Riccati方程。

首先,我们需要定义已知的矩阵 ( A )、( B )、( Q ) 和 ( R )。假设它们分别为:

A = [1 2; 3 4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值