迭代法求黎卡提(Riccati)方程的解

根据上述迭代法求解P,P为Riccati方程的解,然而用LQR需要计算K,再将K算出。

迭代过程中 ,我们可以将此算法和dlqr函数求解的参数进行对比,当误差小于我们设置的允许误差我们就可以把此算法替换掉dlar函数)

P=Q
while(err > tolerance && iteration_num < max_num_iteration)
{
    iteration_num++;
    P_1 = Q + A^T*P*A - A^T*P*B(R+B^T*P*B)^(-1)*B^T*P*A;
    err = fabs(P_1 - P);
    P = P_1;
}

if(iteration_num < max_num_iteration)
{
    K = -(R + B^T * P *B)^(-1)*B^T*P*A
}

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值