R语言中的贝努力分布(Bernoulli Distribution)及其应用

90 篇文章 ¥59.90 ¥99.00
本文介绍了R语言中处理贝努力分布的方法,包括安装相关包、生成随机样本及计算基本统计量。贝努力分布常用于二元分类、市场调研等领域,R语言的工具使其在概率分析和统计建模中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言中的贝努力分布(Bernoulli Distribution)及其应用

贝努力分布是概率论中常见的一种二元随机变量分布。它描述了只有两种可能结果的离散随机变量,如正面和反面、成功和失败、真和假等。在R语言中,我们可以使用相应的函数和技巧来处理和分析贝努力分布。

贝努力分布的概率质量函数(PMF)可以表示为:

P(X = x) = p^x * (1 - p)^(1 - x),  x ∈ {0, 1}

其中,p 表示成功的概率,取值范围在0到1之间。

首先,我们需要在R中安装并加载必要的包。使用以下代码完成这一步骤:

install.packages("gtools")
library(gtools)

接下来,我们可以使用rbernoulli()函数生成服从贝努力分布的随机样本。该函数的参数是生成的样本数量和成功的概率。下面的例子展示了如何生成100个成功概率为0.3的贝努力分布随机数:

set.seed(1)
samples <- rbernoulli(100, prob = 0.3)

上述代码中的set.seed(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值