R语言中的贝努力分布(Bernoulli Distribution)及其应用
贝努力分布是概率论中常见的一种二元随机变量分布。它描述了只有两种可能结果的离散随机变量,如正面和反面、成功和失败、真和假等。在R语言中,我们可以使用相应的函数和技巧来处理和分析贝努力分布。
贝努力分布的概率质量函数(PMF)可以表示为:
P(X = x) = p^x * (1 - p)^(1 - x), x ∈ {0, 1}
其中,p
表示成功的概率,取值范围在0到1之间。
首先,我们需要在R中安装并加载必要的包。使用以下代码完成这一步骤:
install.packages("gtools")
library(gtools)
接下来,我们可以使用rbernoulli()
函数生成服从贝努力分布的随机样本。该函数的参数是生成的样本数量和成功的概率。下面的例子展示了如何生成100个成功概率为0.3的贝努力分布随机数:
set.seed(1)
samples <- rbernoulli(100, prob = 0.3)
上述代码中的set.seed(1)