雷达基础之模糊函数

本文详细介绍了雷达模糊函数的基本概念,包括正型模糊函数和负型模糊函数的定义。正型模糊函数从分辨角度定义,用于量化干扰目标对观测目标的影响;负型模糊函数则从匹配滤波角度定义。通过信号的推导,阐述了两种模糊函数的数学表达式,并揭示了它们在雷达分辨率和匹配滤波中的作用。
摘要由CSDN通过智能技术生成

初识模糊函数

模糊函数,最初是为了研究雷达分辨率而提出。其定量地表示了“干扰目标” 对观测目标的干扰程度。

模糊函数的定义

模糊函数有两种定义形式。
从分辨角度出发定义的模糊函数称为正型模糊函数:
χ ( τ , f d ) = ∫ − ∞ ∞ u ( t ) u ∗ ( t + τ ) e j 2 π f d t d t \chi(\tau,f_d)=\int_{-\infty}^{\infty}u(t)u^{*}(t+\tau)e^{j2\pi f_dt}dt χ(τ,fd)=u(t)u(t+τ)ej2πfdtdt
从匹配滤波角度定义的模糊函数成为负型模糊函数:
χ ( τ , f d ) = ∫ − ∞ ∞ u ( t ) u ∗ ( t − τ ) e j 2 π f d t d t \chi(\tau,f_d)=\int_{-\infty}^{\infty}u(t)u^{*}(t-\tau)e^{j2\pi f_dt}dt χ(τ,fd)=u(t)u(tτ)ej2πfdtdt

正型模糊函数的推导

设雷达发射信号为
s ( t ) = u ( t ) e j 2 π f 0 t s(t)=u(t)e^{j2\pi f_0 t} s(t)=u(t)ej2πf0t
其中 u ( t ) u(t) u(t)为复包络, e j 2 π f 0 t e^{j2\pi f_0 t} ej2πf0t为复载波。
由两个点目标,目标1和目标2,
其时间延迟分别为 d d d τ + d \tau+d τ+d
其多普勒频移分别为 f f f f + f d f+f_d f+fd
则两个点目标的回波信号可以分别表示为:
s 1 ( t ) = u ( t − d ) e j 2 π ( f 0 + f ) ( t − d ) s_1(t)=u(t-d)e^{j2\pi(f_0+f)(t-d)} s1(t)=u(td)ej2π(f0+f)(td)
s 2 ( t ) = u ( t − d − τ ) e j 2 π ( f 0 + f + f d ) ( t − d − τ ) s_2(t)=u(t-d-\tau)e^{j2\pi(f_0+f+f_d)(t-d-\tau)} s2(t)=u(tdτ)ej2π(f0+f+fd)(tdτ)
考察两个目标回波的积分方差:
ε 2 = ∫ − ∞ ∞ ∣ s 1 ( t ) − s 2 ( t ) ∣ 2 d t = 2 [ 2 E − R e ( e − j 2 π ( f 0 + f ) τ ∫ − ∞ ∞ u ( t ′ ) u ∗ ( t ′ + τ ) ) e j 2 π f d t ) ] \varepsilon^2=\int_{-\infty}^{\infty}|s_1(t)-s_2(t)|^2dt \\=2[2E-Re(e^{-j2\pi (f_0+f)\tau}\int_{-\infty}^{\infty}u(t')u^{*}(t'+\tau))e^{j2\pi f_d t})] ε2=s1(t)s2(t)2dt=2[2ERe(ej2π(f0+f)τu(t)u(t+τ))ej2πfdt)]
将上式中的积分项定义为模糊函数
χ ( τ , f d ) = ∫ − ∞ ∞ u ( t ) u ∗ ( t + τ ) e j 2 π f d t d t \chi(\tau,f_d)=\int_{-\infty}^{\infty}u(t)u^{*}(t+\tau)e^{j2\pi f_dt}dt χ(τ,fd)=u(t)u(t+τ)ej2πfdtdt
可直观推断出,模糊函数的值越大,两个目标回波的积分方差就越小,即越分不清楚,越“模糊”。

负型模糊函数的推导

设接收信号的复包络为
u r ( t ) = u ( t − t 0 ) e j 2 π f d t e − j 2 π ( f 0 + f d ) t 0 u_r(t)=u(t-t_0)e^{j2\pi f_d t}e^{-j2\pi (f_0+f_d)t_0} ur(t)=u(tt0)ej2πfdtej2π(f0+fd)t0
为简化起见,且令 t 0 = 0 t_0=0 t0=0,有
u r ( t ) = u ( t ) e j 2 π f d t u_r(t)=u(t)e^{j2\pi f_dt} ur(t)=u(t)ej2πfdt
设匹配滤波器为
h ( t ) = u ∗ ( − t ) h(t)=u^{*}(-t) h(t)=u(t)
输出为
y 0 ( t ) = u r ( t ) ⊗ h ( t ) = ∫ − ∞ ∞ u r ( u ) h ( t − u ) d u y_0(t)=u_r(t)\otimes h(t) \\=\int_{-\infty}^{\infty}u_r(u)h(t-u)du y0(t)=ur(t)h(t)=ur(u)h(tu)du
由于
u r ( u ) = u ( u ) e j 2 π f d u u_r(u)=u(u)e^{j2\pi f_du} ur(u)=u(u)ej2πfdu
h ( u ) = u ∗ ( − u ) h(u)=u^{*}(-u) h(u)=u(u)
h ( − u ) = u ∗ ( u ) h(-u)=u^{*}(u) h(u)=u(u)
h ( t − u ) = u ∗ ( t + u ) h(t-u)=u^{*}(t+u) h(tu)=u(t+u)

y 0 ( t ) = ∫ − ∞ ∞ u ( u ) u ∗ ( t + u ) e j 2 π f d u d u y_0(t)=\int_{-\infty}^{\infty}u(u)u^{*}(t+u)e^{j2\pi f_du}du y0(t)=u(u)u(t+u)ej2πfdudu
变量代换
y 0 ( t ′ ) = ∫ − ∞ ∞ u ( t ) u ∗ ( t ′ + t ) e j 2 π f d t d t y_0(t')=\int_{-\infty}^{\infty}u(t)u^{*}(t'+t)e^{j2\pi f_dt}dt y0(t)=u(t)u(t+t)ej2πfdtdt
τ = 0 − t ′ \tau=0-t' τ=0t,变量代换
y 0 ( t ′ ) = ∫ − ∞ ∞ u ( t ) u ∗ ( t − τ ) e j 2 π f d t d t y_0(t')=\int_{-\infty}^{\infty}u(t)u^{*}(t-\tau)e^{j2\pi f_dt}dt y0(t)=u(t)u(tτ)ej2πfdtdt
定义模糊函数为
χ ( τ , f d ) = ∫ − ∞ ∞ u ( t ) u ∗ ( t − τ ) e j 2 π f d t d t \chi(\tau,f_d)=\int_{-\infty}^{\infty}u(t)u^{*}(t-\tau)e^{j2\pi f_dt}dt χ(τ,fd)=u(t)u(tτ)ej2πfdtdt

  • 5
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值