傅里叶级数复指数形式 | 复信号傅里叶变换

注:本文为 “傅里叶级数复指数形式 | 复信号傅里叶变换” 相关文章合辑。

如有内容异常,请看原文。


复指数形式的傅里叶级数

武恒文 2010 - 04 - 03 10:24:56

本文详细介绍了傅里叶级数的指数变换形式,并将其与三角形式相联系。

一、傅里叶级数的指数形式推导

时域上周期函数展开为三角函数形式的傅里叶级数,可写为:

f ( t ) = a 0 + ∑ n = 1 ∞ a n cos ⁡ ( n Ω t ) + ∑ n = 1 ∞ b n sin ⁡ ( n Ω t ) (4-0) \large f(t)=a_{0}+\sum_{n = 1}^{\infty}a_{n}\cos(n\Omega t)+\sum_{n = 1}^{\infty}b_{n}\sin(n\Omega t)\quad \tag{4-0} f(t)=a0+n=1ancos(nΩt)+n=1bnsin(nΩt)(4-0)

利用三角函数的复指数表示:

cos ⁡ ( x ) = e − j x + e j x 2 \large\cos(x)=\frac{e^{-jx}+e^{jx}}{2} cos(x)=2ejx+ejx

sin ⁡ ( x ) = e j x − e − j x 2 j \large\sin(x)=\frac{e^{jx}-e^{-jx}}{2j} sin(x)=2jejxejx

将式 ( 4 − 0 ) (4 - 0) (40) 中的正余弦项用复指数形式表示:

f ( t ) = a 0 + ∑ n = 1 ∞ a n ( e − j n Ω t + e j n Ω t 2 ) + ∑ n = 1 ∞ b n ( e j n Ω t − e − j n Ω t 2 j ) = ∑ n = 1 ∞ a n ( e − j n Ω t + e j n Ω t 2 ) + a 0 − ∑ n = 1 ∞ j b n ( e j n Ω t − e − j n Ω t 2 ) \large\begin{align*} f(t)&=a_{0}+\sum_{n = 1}^{\infty}a_{n}\left(\frac{e^{-jn\Omega t}+e^{jn\Omega t}}{2}\right)+\sum_{n = 1}^{\infty}b_{n}\left(\frac{e^{jn\Omega t}-e^{-jn\Omega t}}{2j}\right)\\ &=\sum_{n = 1}^{\infty}a_{n}\left(\frac{e^{-jn\Omega t}+e^{jn\Omega t}}{2}\right)+a_{0}-\sum_{n = 1}^{\infty}jb_{n}\left(\frac{e^{jn\Omega t}-e^{-jn\Omega t}}{2}\right) \end{align*} f(t)=a0+n=1an(2ejnΩt+ejnΩt)+n=1bn(2jejnΩtejnΩt)=n=1an(2ejnΩt+ejnΩt)+a0n=1jbn(2ejnΩtejnΩt)

合并相同频率的项:

f ( t ) = ∑ n = 1 ∞ a n − j b n 2 e j n Ω t + a 0 + ∑ n = 1 ∞ a n + j b n 2 e − j n Ω t \large f(t)=\sum_{n = 1}^{\infty}\frac{a_{n}-jb_{n}}{2}e^{jn\Omega t}+a_{0}+\sum_{n = 1}^{\infty}\frac{a_{n}+jb_{n}}{2}e^{-jn\Omega t} f(t)=n=12anjbnejnΩt+a0+n=12an+jbnejnΩt

c 0 = a 0 \large c_{0}=a_{0} c0=a0 c − n = a n + j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值