注:本文为 “傅里叶级数复指数形式 | 复信号傅里叶变换” 相关文章合辑。
如有内容异常,请看原文。
复指数形式的傅里叶级数
武恒文 2010 - 04 - 03 10:24:56
本文详细介绍了傅里叶级数的指数变换形式,并将其与三角形式相联系。
一、傅里叶级数的指数形式推导
时域上周期函数展开为三角函数形式的傅里叶级数,可写为:
f ( t ) = a 0 + ∑ n = 1 ∞ a n cos ( n Ω t ) + ∑ n = 1 ∞ b n sin ( n Ω t ) (4-0) \large f(t)=a_{0}+\sum_{n = 1}^{\infty}a_{n}\cos(n\Omega t)+\sum_{n = 1}^{\infty}b_{n}\sin(n\Omega t)\quad \tag{4-0} f(t)=a0+n=1∑∞ancos(nΩt)+n=1∑∞bnsin(nΩt)(4-0)
利用三角函数的复指数表示:
cos ( x ) = e − j x + e j x 2 \large\cos(x)=\frac{e^{-jx}+e^{jx}}{2} cos(x)=2e−jx+ejx
sin ( x ) = e j x − e − j x 2 j \large\sin(x)=\frac{e^{jx}-e^{-jx}}{2j} sin(x)=2jejx−e−jx
将式 ( 4 − 0 ) (4 - 0) (4−0) 中的正余弦项用复指数形式表示:
f ( t ) = a 0 + ∑ n = 1 ∞ a n ( e − j n Ω t + e j n Ω t 2 ) + ∑ n = 1 ∞ b n ( e j n Ω t − e − j n Ω t 2 j ) = ∑ n = 1 ∞ a n ( e − j n Ω t + e j n Ω t 2 ) + a 0 − ∑ n = 1 ∞ j b n ( e j n Ω t − e − j n Ω t 2 ) \large\begin{align*} f(t)&=a_{0}+\sum_{n = 1}^{\infty}a_{n}\left(\frac{e^{-jn\Omega t}+e^{jn\Omega t}}{2}\right)+\sum_{n = 1}^{\infty}b_{n}\left(\frac{e^{jn\Omega t}-e^{-jn\Omega t}}{2j}\right)\\ &=\sum_{n = 1}^{\infty}a_{n}\left(\frac{e^{-jn\Omega t}+e^{jn\Omega t}}{2}\right)+a_{0}-\sum_{n = 1}^{\infty}jb_{n}\left(\frac{e^{jn\Omega t}-e^{-jn\Omega t}}{2}\right) \end{align*} f(t)=a0+n=1∑∞an(2e−jnΩt+ejnΩt)+n=1∑∞bn(2jejnΩt−e−jnΩt)=n=1∑∞an(2e−jnΩt+ejnΩt)+a0−n=1∑∞jbn(2ejnΩt−e−jnΩt)
合并相同频率的项:
f ( t ) = ∑ n = 1 ∞ a n − j b n 2 e j n Ω t + a 0 + ∑ n = 1 ∞ a n + j b n 2 e − j n Ω t \large f(t)=\sum_{n = 1}^{\infty}\frac{a_{n}-jb_{n}}{2}e^{jn\Omega t}+a_{0}+\sum_{n = 1}^{\infty}\frac{a_{n}+jb_{n}}{2}e^{-jn\Omega t} f(t)=n=1∑∞2an−jbnejnΩt+a0+n=1∑∞2an+jbne−jnΩt
令 c 0 = a 0 \large c_{0}=a_{0} c0=a0 , c − n = a n + j