VGG-Net框架下的人脸生成
笔者主要从以下几个方面对这篇文章进行叙述:
- 概述
- 作者的思路
- 主要工作
- 思考
概述
文章主要的工作是在VGG-Net框架基础上实现了人脸属性分类,并使用定制高斯混合模型(cGMM)由输入人脸图像生成包含特定属性的人脸。
作者的思路
在正式讨论文章的实现之前,有必要先对作者的思路进行阐述。
(1)VGG框架
作者对为何采用VGG框架在文章中作了解释,首先使用一定数量的图像(针对某个属性对图像进行标注)在VGG网络中进行测试,取FC-7层的响应作为特征(姑且这么说吧),借助t-SNE算法将高维特征映射到2维空间中,观察标注信息与空间分布信息。下图示意了young属性的分布情况:
从图中看出被标注的图片具有明显的聚类效果,这也是为什么作者认为VGG能够work的原因。
同时作者也表示特征对于不同的属性描述性也有差异,比如下图的光照属性,聚类效果就不如人

本文介绍了基于VGG-Net框架的人脸生成方法,通过VGG网络的FC-7层特征和定制的高斯混合模型(cGMM)生成特定属性的人脸。作者首先利用VGG进行特征学习,然后通过特征反演和cGMM来生成目标响应,实现属性的独立控制。尽管结果显示生成的图像与原图相似度一般,但这种方法对于训练集增强和预处理具有潜在价值。
最低0.47元/天 解锁文章
1500

被折叠的 条评论
为什么被折叠?



