Cross Modal Distillation for Supervision Transfer

该文提出了一种名为'监督转移'的方法,将标注模态(如RGB图像)的特征用作无标注模态(如深度和光流图像)的监督信号,以进行特征学习。通过在未标注模态上匹配标注模态的中间层特征,实现跨模态的监督迁移,从而在无标注数据上获得更好的特征表示。实验结果显示,这种方法显著提高了在单模态数据上的性能,特别是在深度图像上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

本文关注点是对图片的不同模态,做监督迁移学习。两种不同的模态,一种有大量的标注样本,一种没有。将从标注过样本的模态中学习得到的特征作为监督信号,用于无标注样本模态的特征学习。此方案能够对无标注信息的模态学习到很好的特征,也可以用于只含有少量标注样本的新模态的预训练。文章做了RGB图片(labeled)到depth(unlabeled)和optical flow(unlabeled)图片的监督迁移,实验的结果证实跨模态的监督迁移能带来大幅度的性能提升。

introduction

当前,计算机视觉方面的基本模式是从一个包含有大量标注样本的数据集中学习到generic feature,针对不同的任务再进一步微调。此模式几乎囊括了所有的state-of-art system:如object detection,semantic segmentation, object segmentation和pose estimation。所有上述任务的generic feature的学习均依赖于有大量标注图片的数据集。为此,本文就产生了如下疑问:对于无标注数据的模态中的图片,这一基本模式的相似性是什么?对于这些模态,是否我们也需要相似规模的标注数据来学习generic feature。
为此本文提出了一种迁移方案,将一个模态(labeled)中学习到的特征迁移到另外一个模态(unlabeled)中。此方案需要利用到两个模态中的paired image以及利用从labeled模态中学习到的mid-level特征来监督unlabeled模态的特征学习。文中称此方案为“supervision transfer”。下图即为方案的图示:

### YOLO多模态融合机制 #### 实现原理 YOLO (You Only Look Once) 是一种高效的实时目标检测框架,在引入多模态融合之后,可以显著提升其在复杂场景下的表现。通过结合来自不同传感器的信息,如RGB图像、深度图和其他感知数据,YOLO能够在更广泛的环境下保持高精度的目标识别性能。 多模态特征提取阶段,YOLO采用并行结构来分别处理不同类型的数据流。对于视觉信息,通常使用卷积神经网络(CNNs),而对于其他类型的传感信号,则可能涉及专门设计的编码器架构[^1]。这些分支产生的高级语义特征随后被聚合在一起形成联合表征空间,从而使得模型不仅能够捕捉单一模式内的局部特性,还能探索跨模式间的互补性和关联性[^2]。 #### 研究论文 关于YOLO及其扩展版本的研究文献众多,其中一些专注于如何有效地集成额外的感觉通道以增强原始单目输入的效果。例如,《FusionNet: A Deep Fusion Network for LiDAR and Camera Based Obstacle Detection》探讨了一种新颖的方法论,即利用激光雷达(LiDAR)点云与摄像头拍摄的画面相结合的方式来进行障碍物探测;而另一篇名为《Cross-modal Distillation for Supervision Transfer》的文章则提出了跨模态蒸馏的概念,允许从资源丰富的域向稀缺标注样本转移监督信息,这有助于解决某些特定应用场景下训练集不足的问题[^3]。 #### 代码示例 下面给出一段简单的Python伪代码片段展示了一个基于PyTorch实现的基础版YOLOv5加上基本的双路(RGB-D)多模态支持: ```python import torch from yolov5.models.experimental import attempt_load, Ensemble class MultiModalYOLO(torch.nn.Module): def __init__(self, rgb_model_path=None, depth_model_path=None): super(MultiModalYOLO, self).__init__() # Load pre-trained models or initialize new ones self.rgb_model = attempt_load(rgb_model_path, map_location='cpu') self.depth_model = attempt_load(depth_model_path, map_location='cpu') if depth_model_path else None def forward(self, img_rgb, img_depth=None): pred_rgb = self.rgb_model(img_rgb)[0] if self.depth_model is not None and img_depth is not None: pred_depth = self.depth_model(img_depth)[0] # Simple fusion strategy by averaging predictions fused_pred = (pred_rgb + pred_depth) / 2. else: fused_pred = pred_rgb return fused_pred.sigmoid() # Example usage of the multimodal model if __name__ == '__main__': device = 'cuda' if torch.cuda.is_available() else 'cpu' mm_yolo = MultiModalYOLO('path/to/rgb/model.pt', 'path/to/depth/model.pt').to(device) dummy_input_rgb = torch.randn((1, 3, 640, 640)).to(device) dummy_input_depth = torch.randn((1, 1, 640, 640)).to(device) output = mm_yolo(dummy_input_rgb, dummy_input_depth) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值