《Deep Convolutional Denoising of Low-Light Images》
泊松噪声
泊松分布通常用于描述单位时间内随机事件发生的次数。在图像建模中,基于光照的图像噪声经常使用泊松噪声来描述,这主要是从传感器角度出发的。
由于光子数量是离散的,同时传感器在每个像素位置对光子的探测具有独立性。通常过程是传感器对一个时间区间内到达的光子数进行计数,这个过程符合泊松噪声的特征,其强度通常会受光源和亮度影响。
在计算机视觉上,以往为了简化运算,通常使用均值为零的高斯分布来模拟图像噪声,但是在物理意义上来说,高斯分布对图像噪声的描述不如泊松噪声准确。
使用CNN做降噪的原因
- 强大的学习和表达能力,能够发掘潜在特征而不需要预先显式的定义
- 已有模型对不同训练数据集的迁移能力较强,可通过自己的数据进行有针对性的训练
- 目前已有许多高速实现包括GPU并行的工具,在计算卷积时,效率高于其他类型的模型
网络结构
- 20层64个3X3核的卷积层,其中前18层后接非线性层RELU,最后两层未使用。每层的前63个核获取的信息进入下

本文介绍了使用深度卷积网络对低光照图像进行降噪的方法,探讨了泊松噪声在图像建模中的应用,并阐述了CNN在降噪中的优势。网络结构包含20层卷积层,通过训练学习不同层次的噪声负数,以恢复清晰图像。实验表明,针对特定物体的降噪网络能提高效果,但可能造成信息丢失。文章还提出了低光照人脸识别和红外图像降噪等应用前景。
最低0.47元/天 解锁文章
8972

被折叠的 条评论
为什么被折叠?



