前置知识:函数求导简介
复合函数求导
若 y = f ( u ) y=f(u) y=f(u), u = g ( x ) u=g(x) u=g(x),则 d y d x = d y d u ⋅ d u d x \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx} dxdy=dudy⋅dxdu
如:
( e sin x ) ′ = e sin x c o s x (e^{\sin x})'=e^{\sin x}cosx (esinx)′=esinxcosx
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) [f(g(x))]'=f'(g(x)) \cdot g'(x) [f(g(x))]′=f′(g(x))⋅g′(x)
证明:复合函数的导数及证明
例题
例1
y = ln sin x y=\ln \sin \sqrt x y=lnsinx