复合函数求导

前置知识:函数求导简介

复合函数求导

y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x),则 d y d x = d y d u ⋅ d u d x \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx} dxdy=dudydxdu

如:
( e sin ⁡ x ) ′ = e sin ⁡ x c o s x (e^{\sin x})'=e^{\sin x}cosx (esinx)=esinxcosx
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) [f(g(x))]'=f'(g(x)) \cdot g'(x) [f(g(x))]=f(g(x))g(x)

证明:复合函数的导数及证明


例题

例1

y = ln ⁡ sin ⁡ x y=\ln \sin \sqrt x y=lnsinx

李雅普诺夫复合函数求导是使用链式法则来计算的。链式法则的思想是当一个函数由复合函数表示时,可以用构成复合函数的各个函数的导数乘积来表示导数。具体来说,如果函数f(x)由函数g(u)和函数h(x)的复合函数表示,即f(x) = g(h(x)),那么f(x)对x的导数可以计算为g'(h(x)) * h'(x)。其中,g'(u)和h'(x)分别是函数g(u)和h(x)对其自变量的导数。根据链式法则,我们可以将复合函数的导数分解为各个函数导数的乘积。 在涉及到数组的导数求解时,我们需要将矩阵计算分解为单个标量的计算。这是因为在有丰富的求导经验之前,同时执行多个复杂操作很容易出错。因此,我们可以将矩阵的每个元素视为一个标量,然后使用链式法则来计算每个元素对自变量的导数。 总结来说,李雅普诺夫复合函数求导使用链式法则来计算,将复合函数的导数分解为各个函数导数的乘积,并将矩阵计算分解为单个标量的计算来求解导数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【知识相关】让向量、矩阵和张量的求导更简洁些吧](https://blog.csdn.net/qq_41742361/article/details/108092020)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [让向量、矩阵和张量的求导更简洁些吧](https://blog.csdn.net/qq_41742361/article/details/108091364)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值