高等数学笔记:泰勒展开求解渐近线

泰勒展开求解渐近线

一、水平渐近线

01 概念定义

lim ⁡ x → ∞ f ( x ) = A \lim \limits_{x \rightarrow \infty} f(x)=A xlimf(x)=A,则称 y = A y=A y=A f ( x ) f(x) f(x) 的水平渐近线。

02 理解点拨

命题 lim ⁡ x → − ∞ f ( x ) = A \lim \limits_{x \rightarrow-\infty} f(x)=A xlimf(x)=A lim ⁡ x → + ∞ f ( x ) = A \lim \limits_{x \rightarrow+\infty} f(x)=A x+limf(x)=A 之一成立就称 y = A y=A y=A f ( x ) f(x) f(x) 的水平渐近线

y = arctan ⁡ x y=\arctan x y=arctanx,由于 lim ⁡ x → − ∞ arctan ⁡ x = − π 2 , lim ⁡ x → + ∞ arctan ⁡ x = π 2 \lim \limits_{x \rightarrow-\infty} \arctan x=-\frac{\pi}{2}, \lim \limits_{x \rightarrow+\infty} \arctan x=\frac{\pi}{2} xlimarctanx=2π,x+limarctanx=2π

故称 y = − π 2 y=-\frac{\pi}{2} y=2π x → − ∞ x \rightarrow-\infty x 的水平渐进线, y = π 2 y=\frac{\pi}{2} y=2π x → − ∞ x \rightarrow-\infty x 的水平渐进线。

二、铅直渐近线

01 概念定义

lim ⁡ x → x 0 f ( x ) = ∞ \lim \limits_{x \rightarrow x_{0}} f(x)=\infty xx0limf(x)=,则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的铅直渐近线。

02 理解点拨

上面的极限过程 x → x 0 x \rightarrow x_{0} xx0 换成 x → x 0 + x \rightarrow x_{0^{+}} xx0+ x → x 0 − x \rightarrow x_{0^{-}} xx0

x → ∞ x \rightarrow \infty x 换成 x → + ∞ x \rightarrow+\infty x+ x → − ∞ x \rightarrow-\infty x 结论也成立。

曲线的铅直渐进线对应函数的无穷间断点,若函数没有无穷间断点,则曲线没有铅直渐近线。

三、斜渐近线

01 概念定义

lim ⁡ x → ∞ f ( x ) x = k ≠ 0 \lim \limits_{x \rightarrow \infty} \frac{f(x)}{x}=k \neq 0 xlimxf(x)=k=0,且 lim ⁡ x → ∞ ( f ( x ) − k x ) = b \lim \limits_{x \rightarrow \infty}(f(x)-k x)=b xlim(f(x)kx)=b,则 y = k x + b y=k x+b y=kx+b y = f ( x ) y=f(x) y=f(x) 的斜渐近线。

02 理解点拨

若上面的极限过程 x → ∞ x \rightarrow \infty x 同时换成 x → + ∞ x \rightarrow+\infty x+ 或同时 x → − ∞ x \rightarrow-\infty x 结论也成立。

03 解释评注

由水平渐近线和斜渐近线的定义可知, x x x 的同一变化过程中,水平渐近线和斜渐近线不同时存在,但不在同一个过程下,两者可以共存。

由斜渐近线的定义有 b = lim ⁡ x → ∞ ( f ( x ) − k x ) ⇔ f ( x ) = k x + b + α ( x ) b=\lim \limits_{x \rightarrow \infty}(f(x)-k x) \Leftrightarrow f(x)=k x+b+\alpha(x) b=xlim(f(x)kx)f(x)=kx+b+α(x)

其中 lim ⁡ x → ∞ α ( x ) = 0 \lim \limits_{x \rightarrow \infty} \alpha(x)=0 xlimα(x)=0,即若 f ( x ) f(x) f(x) 可写成上述形式,则 y = k x + b y=k x+b y=kx+b 为一条斜渐近线。

四、求解方法

第一步:先找到 y = f ( x ) y=f(x) y=f(x) 无定义的点或区间端点 x 0 x_{0} x0,若 x 0 x_{0} x0 为无穷间断点,可得 x = x 0 x=x_{0} x=x0 为铅直浙近线。

第二步:计算 lim ⁡ x → + ∞ f ( x ) \lim\limits_{x \rightarrow+\infty} f(x) x+limf(x),或 lim ⁡ x → − ∞ f ( x ) \lim\limits_{x \rightarrow-\infty} f(x) xlimf(x) 看极限是否存在,若存在,则 y = lim ⁡ x → − ∞ f ( x ) y=\lim\limits_{x \rightarrow-\infty} f(x) y=xlimf(x) y = lim ⁡ x → + ∞ f ( x ) y=\lim\limits_{x \rightarrow+\infty} f(x) y=x+limf(x) 为水平渐近线。

第三步:若某过程下水平渐近线存在,则该过程下的斜渐近线不存在。若某过程下无水平渐近线,再考虑该过程下的斜渐近线。

提马归幂, k , b k,b k,b 分离,常 k k k b b b

斜存在时,分子比分母天然高一阶

注:求 b b b 一定要出现 1 x \frac1x x1,哪怕约掉或利用 b = lim ⁡ x → ∞ ( f ( x ) − k x ) b=\lim \limits_{x \rightarrow \infty}(f(x)-k x) b=xlim(f(x)kx)

五、例题集合

【例 1】曲线 y = 1 x + ln ⁡ ( 1 + e x ) \displaystyle{ y=\frac{1}{x}+\ln \left(1+e^{x}\right) } y=x1+ln(1+ex) 的渐近线为

【例 2】曲线 y = ( 2 x − 1 ) e 1 x \displaystyle{ y=(2x-1)e^{\frac1x} } y=(2x1)ex1 的斜渐近线方程为

【例 3】曲线 y = x 2 2 x + 1 \displaystyle{ y=\frac{x^2}{2x+1} } y=2x+1x2 的斜渐近线方程为

【例 4】曲线 y = x ∣ x ∣ 1 + x \displaystyle{ y=\frac{x|x|}{1+x} } y=1+xxx 的斜渐近线方程为

【例 5】曲线 y = x 3 1 + x 2 + arctan ⁡ ( 1 + x 2 ) \displaystyle{ y=\frac{x^{3}}{1+x^{2}}+\arctan \left(1+x^{2}\right) } y=1+x2x3+arctan(1+x2) 的斜渐近线方程为

【例 6】曲线 y = x 3 ( x − 1 ) 2 + x 2 ( e 1 x − 1 ) \displaystyle{ y=\frac{x^{3}}{(x-1)^{2}}+x^{2}(e^{\frac{1}{x}}-1) } y=(x1)2x3+x2(ex11) 的非铅直渐近线方程为

【例 7】曲线 y = x ( 1 + arcsin ⁡ 2 x ) \displaystyle{ y=x(1+\arcsin \frac{2}{x}) } y=x(1+arcsinx2) 的斜渐近线方程为

【例 8】曲线 y = x 1 + x ( 1 + x ) x \displaystyle{ y=\frac{x^{1+x}}{(1+x)^x} } y=(1+x)xx1+x 的斜渐近线方程为

【例 9】 ( 12 年 1 , 2 , 3 ) (12年1,2,3) (121,2,3) 求曲线 y = x 2 + 1 x − 1 \displaystyle{ y=\frac{x^{2}+1}{x-1} } y=x1x2+1 渐近线

【例10】 ( 00 年 2 ) (00年2) (002) 曲线 y = ( 2 x − 1 ) e 1 x \displaystyle{ y=(2 x-1) e^{\frac{1}{x}} } y=(2x1)ex1 的斜渐近线方程为

【例11】求曲线 y = x 2 + 1 x + 1 e 1 x − 1 \displaystyle{ y=\frac{x^{2}+1}{x+1} e^{\frac{1}{x-1}} } y=x+1x2+1ex11 的渐近线

【例12】 ( 05 年 1 ) (05年1) (051) 曲线 y = x 2 2 x + 1 \displaystyle{ y=\frac{x^{2}}{2 x+1} } y=2x+1x2 的斜渐近线方程为

【例13】 ( 05 年 2 ) (05年2) (052) 曲线 y = ( 1 + x ) 3 2 x \displaystyle{ y=\frac{(1+x)^{\frac{3}{2}}}{\sqrt{x}} } y=x (1+x)23 的斜渐近线方程为

【例14】 ( 10 年 2 ) (10年2) (102) 曲线 y = 2 x 3 x 2 + 1 \displaystyle{ y=\frac{2 x^{3}}{x^{2}+1} } y=x2+12x3 的渐近线方程为

【例15】 ( 16 , 2 ) (16,2) (16,2) 曲线 y = x 3 1 + x 2 + arctan ⁡ ( 1 + x 2 ) \displaystyle{ y=\frac{x^{3}}{1+x^{2}}+\arctan \left(1+x^{2}\right) } y=1+x2x3+arctan(1+x2) 的斜渐近线方程为

【例16】曲线 y = x 2 + 1 x 2 − 1 \displaystyle{ y=\frac{x^{2}+1}{\sqrt{x^{2}-1}} } y=x21 x2+1 的斜渐近线方程为

【例17】求曲线 y = x arctan ⁡ x y=x\arctan x y=xarctanx 的斜渐近线

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值