MobileNetV1容易理解的代码实现手法

MobileNetV1容易理解的代码实现手法

MobileNetV1的网络结构图

MobileNetV1的网络结构图

代码实现

class MobileNetV1(nn.Module):
    def __init__(self):
        super(MobileNetV1, self).__init__()

        def conv_bn(inp, oup, stride):
            return nn.Sequential(
                nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
                nn.BatchNorm2d(oup),
                nn.ReLU(inplace=True)
            )

        def conv_dw(inp, oup, stride):
            return nn.Sequential(
                nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
                nn.BatchNorm2d(inp),
                nn.ReLU(inplace=True),
    
                nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
                nn.ReLU(inplace=True),
            )

        self.model = nn.Sequential(
            conv_bn(  3,  32, 2), 
            conv_dw( 32,  64, 1),
            conv_dw( 64, 128, 2),
            conv_dw(128, 128, 1),
            conv_dw(128, 256, 2),
            conv_dw(256, 256, 1),
            conv_dw(256, 512, 2),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 1024, 2),
            conv_dw(1024, 1024, 1),
            nn.AvgPool2d(7),
        )
        self.fc = nn.Linear(1024, 1000)

    def forward(self, x):
        x = self.model(x)
        x = x.view(-1, 1024)
        x = self.fc(x)
        return x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Mobilenetv1是一种轻量级的卷积神经网络,适用于移动设备和嵌入式设备。在PyTorch中,可以使用torchvision.models.mobilenet_v1来加载预训练的模型,也可以使用该模型的代码进行自定义训练和推理。以下是一个简单的Mobilenetv1代码示例: ``` import torch import torch.nn as nn import torch.nn.functional as F class MobileNetV1(nn.Module): def __init__(self, num_classes=100): super(MobileNetV1, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(128) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn6 = nn.BatchNorm2d(256) self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn8 = nn.BatchNorm2d(512) self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(512) self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn10 = nn.BatchNorm2d(512) self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn11 = nn.BatchNorm2d(512) self.conv12 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False) self.bn12 = nn.BatchNorm2d(1024) self.conv13 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.bn13 = nn.BatchNorm2d(1024) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) x = self.conv6(x) x = self.bn6(x) x = self.relu(x) x = self.conv7(x) x = self.bn7(x) x = self.relu(x) x = self.conv8(x) x = self.bn8(x) x = self.relu(x) x = self.conv9(x) x = self.bn9(x) x = self.relu(x) x = self.conv10(x) x = self.bn10(x) x = self.relu(x) x = self.conv11(x) x = self.bn11(x) x = self.relu(x) x = self.conv12(x) x = self.bn12(x) x = self.relu(x) x = self.conv13(x) x = self.bn13(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(), -1) x = self.fc(x) return x ``` 在这个代码中,我们定义了一个名为MobileNetV1的类,它继承自nn.Module。在__init__函数中,我们定义了网络的各个层,包括卷积层、批归一化层和ReLU激活函数。在forward函数中,我们按照顺序将输入x传递到各个层中,并最终输出分类结果。这个代码可以用于自定义训练和推理,也可以作为torchvision.models.mobilenet_v1的基础代码进行修改和扩展。 ### 回答2: MobileNet V1是一种轻量级深度学习模型,被广泛应用于移动设备和嵌入式设备上进行图像分类任务。在PyTorch中,我们可以使用现成的MobileNet V1代码,快速搭建模型并进行训练和预测。 MobileNet V1的PyTorch代码实现,可以在PyTorch的官方Github仓库中找到。该代码库提供了两种不同版本的MobileNet V1模型,包括预先训练好的模型和用于自定义训练的模型。这些代码使用了PyTorch的函数和类,以及提供了许多用于优化和调整模型的工具。 MobileNet V1代码使用了深度可分离卷积(Depthwise Separable Convolution)来减少模型的计算和内存需求。这种卷积以一种新颖的方式处理特征图,将必要的计算分散到每个通道上。此外,代码还使用了全局平均池化层,将每个特征图替换为其平均值,从而减少了特征图的大小和维度。 使用PyTorchMobileNet V1代码非常简单。您只需要调用相应的函数来定义和构建模型,并在训练和预测时向其提供相应的输入和输出张量即可。该代码也提供了各种用于数据增强、优化和调整模型的工具,方便用户进行优化和调整。 综上所述,MobileNet V1的PyTorch代码是一种功能强大、易于使用的深度学习工具,它能够在移动设备和嵌入式设备上快速地实现图像分类任务。无论您是初学者还是有经验的深度学习专业人员,该代码库都是一个必不可少的工具。 ### 回答3: MobileNetV1是一款具有高效网络架构的深度学习模型,它可以用于图像分类、目标检测等应用场景。该模型特别适用于具有限制计算资源的移动设备。 在PyTorch中,MobileNetV1代码可以通过下面的方式进行实现: 1. 安装PyTorch库,并导入需要使用的模块: ``` import torch import torch.nn as nn import torch.nn.functional as F ``` 2. 定义MobileNetV1中的基本模块: ``` class ConvBNReLU(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): super(ConvBNReLU, self).__init__() padding = (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x ``` 3. 定义MobileNetV1的主体结构: ``` class MobileNetV1(nn.Module): def __init__(self, num_classes=1000): super(MobileNetV1, self).__init__() self.conv1 = ConvBNReLU(3, 32, stride=2) self.dw1 = nn.Sequential( ConvBNReLU(32, 32, groups=32), nn.Conv2d(32, 64, 1, 1, 0, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.dw2 = nn.Sequential( ConvBNReLU(64, 64, stride=2, groups=64), nn.Conv2d(64, 128, 1, 1, 0, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.dw3 = nn.Sequential( ConvBNReLU(128, 128, stride=2, groups=128), nn.Conv2d(128, 256, 1, 1, 0, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) self.dw4 = nn.Sequential( ConvBNReLU(256, 256, stride=2, groups=256), nn.Conv2d(256, 512, 1, 1, 0, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1) ) self.linear = nn.Linear(512, num_classes) def forward(self, x): x = self.conv1(x) x = self.dw1(x) x = self.dw2(x) x = self.dw3(x) x = self.dw4(x) x = x.view(x.size(0), -1) x = self.linear(x) return x ``` 在上述代码中,MobileNetV1的主体结构由5个“深度可分离卷积”组成。这些卷积层的参数量很小,并且可以提高计算效率。每个“深度可分离卷积”由一个深度卷积和一个1×1卷积层组成。 最后,使用MobileNetV1可以进行图像分类任务训练,示例如下: ``` # create a MobileNetV1 model model = MobileNetV1(num_classes=10) # define a loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # train the model for epoch in range(10): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}' .format(epoch+1, 10, i+1, len(train_loader), loss.item())) # test the model with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` 在这个例子中,我们定义了一个包含10类的图像分类任务。通过使用PyTorch实现MobileNetV1模型,我们可以训练并测试该模型在这个任务上的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值