堆排序的实现

本文详细解释了堆排序中的关键部分——调整堆函数,包括如何确保最大堆性质,以及堆排序的过程,涉及构建初始堆和交换堆顶元素。代码示例展示了如何使用`AdjustHeap`和`HeapSort`对数组进行排序。
摘要由CSDN通过智能技术生成

堆排序

调整堆(AdjustHeap)。调整堆的目的是确保以某个节点为根的子树满足堆的性质(最大堆或最小堆)。这里我们假设要实现的是最大堆。在堆(无论是最大堆还是最小堆)的数据结构中,左子节点和右子节点与它们的父节点之间存在特定的关系。这些关系确保了堆的性质得以维持。对于任何给定的父节点,其左子节点的索引通常可以通过公式 2 * parent_index + 1 计算得出,而右子节点的索引则通过公式 2 * parent_index + 2 计算得出。这里,parent_index 是父节点在数组中的索引。

调整堆

void AdjustHeap(int *nums, int parent, int size){
    int temp = nums[parent];
    int child = 2 * parent + 1;
    while(child < size){
        if(child + 1 < size && nums[child] < nums[child + 1]){
            child++;
        }
        if(temp >= nums[child]){
            break;
        }
        nums[parent] = nums[child];
        parent = child;
        child = 2 * parent + 1;
    }
    nums[parent] = temp;
}

代码详解如下:

  1. 函数定义
void AdjustHeap(int *nums, int parent, int size)

这个函数有三个参数:

  • nums:指向整数数组的指针。
  • parent:当前需要调整的子树的根节点在数组中的索引。
  • size:数组的大小。
  1. 取出当前元素
int temp = nums[parent];

temp存储了当前父节点的值,接下来我们将尝试将这个值放到正确的位置,以确保以该父节点为根的子树是一个最大堆。

  1. 初始化子节点索引
int child = 2 * parent + 1;

child` 初始化为父节点的左子节点在数组中的索引。

  1. 循环调整子节点
while(child < size)

只要子节点的索引还在数组范围内,就持续调整。

  1. 找到左右子节点中的较大值
if( child + 1 < size && nums[child] < nums[ child + 1 ] ){  
    child++;  
}

如果右子节点存在且其值大于左子节点的值,则更新 child 为右子节点的索引。

  1. 判断父节点是否需要移动
if (temp >= nums[child]){  
    break;  
}

如果父节点的值已经大于或等于子节点的值,说明父节点已经在正确的位置,跳出循环。

  1. 移动父节点到子节点的位置
nums[parent] = nums[child];

将子节点的值赋给父节点,这样父节点就暂时占据了子节点的位置。

  1. 更新父节点和子节点的索引
parent = child;  
child = 2 * parent + 1;

将父节点更新为刚刚赋值的子节点,并重新计算新的子节点的索引。

  1. 将 temp 值放到最终的位置
nums[parent] = temp;

循环结束后,将 temp(原始父节点的值)放到最终的正确位置。

通过这个过程,我们可以确保以 parent 为根的子树满足最大堆的性质。

交换函数

void swap(int *a, int *b){
    int temp = *a;
    *a = *b;
    *b = temp;
}

排序

void HeapSort(int *nums, int size){
    // 1. 构建初始堆
    for(int i = size / 2 - 1; i >= 0; i--){
        AdjustHeap(nums, i, size);
    }
    // 2. 堆排序过程
    for(int i = size - 1;i > 0; i--){
        // 将堆顶元素与当前未排序部分的最后一个元素交换
        swap(&nums[0], &nums[i]);
        // 重新调整堆(除了已经排序好的最后一个元素)
        AdjustHeap(nums, 0, i);
    }
}
  1. 这段代码是堆排序算法中构建初始堆的部分。在堆排序中,我们首先需要把一个无序的数组转换成一个大顶堆(或小顶堆,取决于排序需求)。此时我们转成的是大顶堆。
for (int i = size / 2 - 1; i >= 0; i--) {    
    adjustHeap(arr, i, size);    
}
  1. 堆排序过程
for(int i = size - 1;i > 0; i--){
        // 将堆顶元素与当前未排序部分的最后一个元素交换
        swap(&nums[0], &nums[i]);
        // 重新调整堆(除了已经排序好的最后一个元素)
        AdjustHeap(nums, 0, i);
    }

打印函数

void Print(int *nums, int size){
    for(int i = 0;i < size; ++i){
        printf("%d ",nums[i]);
    }
}

完整代码

#include <stdio.h>
void swap(int *a, int *b){
    int temp = *a;
    *a = *b;
    *b = temp;
}
void AdjustHeap(int *nums, int parent, int size){
    int temp = nums[parent];
    int child = 2 * parent + 1;
    while(child < size){
        if(child + 1 < size && nums[child] < nums[child + 1]){
            child++;
        }
        if(temp >= nums[child]){
            break;
        }
        nums[parent] = nums[child];
        parent = child;
        child = 2 * parent + 1;
    }
    nums[parent] = temp;
}
void HeapSort(int *nums, int size){
    for(int i = size / 2 - 1; i >= 0; i--){
        AdjustHeap(nums, i, size);
    }
    for(int i = size - 1;i > 0; i--){
        swap(&nums[0], &nums[i]);
        AdjustHeap(nums, 0, i);
    }
}
void Print(int *nums, int size){
    for(int i = 0;i < size; ++i){
        printf("%d ",nums[i]);
    }
}
int main()
{
    int nums[]={5,2,8,9,0,3,7};
    int size = sizeof(nums) / sizeof(nums[0]);
    HeapSort(nums, size);
    Print(nums, size);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值