【笔记-自用】美赛建模笔记-第一讲-层次分析法

本文详细阐述了层次分析法在解决评价类问题中的应用,包括构建递阶层次结构模型、判断矩阵的创建与一致性检验、权重计算方法及其局限性。通过实例演示了如何通过SmartArt图示和数学公式来操作,以及决策层大小限制和特定场景下的替代方法。
摘要由CSDN通过智能技术生成

层次分析法-评价类问题

层次分析法是一种常用的综合评价方法,在分析权重时,结果可能不准确,因为数据是自己填的。

运用

建立递阶层次结构模型

画层次结构图:(使用 SmartArt / 亿图图示 生成)

  • 目标层:评价的目标
  • 准则层:指标/因素(根据什么指标来评价方案的好坏)
  • 措施层:可选方案
  • 权重(和为一)
    打分法解决评价类问题,同颜色单元格和为1,表示权重
    上图为打分法解决评价类问题的图。同颜色单元格和为1,表示权重。

关于指标/因素
根据题目中的背景材料、常识、网上收集到的参考资料筛选出合适的指标。

下面有一个推荐的索引网站:虫部落

构造出各层次中所有判断矩阵

选好指标后,需要确定指标的权重,为了避免考虑不周,需要两两比较,推算权重
下图是重要程度。
重要程度【满意度】

判断矩阵满足 a i j ∗ a j i = 1 a_{ij}*a_{ji}=1 aijaji=1
指标与指标相比较,得出一个判断矩阵(正互反矩阵)。
就像这样的矩阵
接下来在每个指标下,在把方案之间相互比较,得出多个矩阵。在填写时一定要注意逻辑上有无问题,虽然两两比较了,但整体上的排序不能出现矛盾。

层次单排序及一致性检验

一致矩阵

各行各列成倍数关系
性质:

  • 在满足正互反矩阵的前提下,还满足 a i j ∗ a i j = a i k a_{ij}* a_{ij}=a_{ik} aijaij=aik
  • n阶正互反矩阵A为一致矩阵时,当且仅当最大特征值 λ m a x = n \lambda_{max}=n λmax=n
  • n阶正互反矩阵A不是一致矩阵时,则最大特征值 λ m a x > n \lambda_{max}>n λmax>n
一致矩阵检验
  • 计算一致性指标CI C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n-1} CI=n1λmaxn
  • 查找对应的平均随机一致性指标RI
  • 计算一致性比例CR C R = C I R I CR=\frac{CI}{RI} CR=RICI
  • C R < 0.1 CR<0.1 CR<0.1 ,则以为判断矩阵的一致性可以接受,否则需修正:往一致矩阵上调整。
计算权重

权重一定要进行归一化处理

  • 一致矩阵算一列即可(每一列成比例):用每一元素除以所在列的和。
  • 判断矩阵要算所有列,假设有 n n n列,则得到 n n n种权重,将所有的权重加起来数值上就为 n n n。再将每个元素的n种情况的权重加起来除以 n n n即可。
  • 简化版:算术平均法求权重:
    1、将判断矩阵按照列归一化:每一个元素除以所在列的和
    2、按行求和(各列相加)
    3、将相加后的向量中每一个元素除以 n n n求得权重向量

数学表述:
Assuming that a judgment matrix A = [ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ] A=\left[ \begin{matrix} a_{11} &\cdots& a_{1n} \\ \vdots&\ddots&\vdots\\ a_{n1} &\cdots& a_{nn} \end{matrix}\right] A=a11an1a1nann
Then, using the method of arithmetic average, we get the weight vector, ω i = 1 n ∑ j = 1 n a i j ∑ k = 1 n a k j \omega_{i}=\frac{1}{n}\sum_{j=1}^{n}\frac{a_{ij}}{\sum_{k=1}^{n}a_{kj}} ωi=n1j=1nk=1nakjaij

下面展示一些 latex里矩阵代码

Assuming that a judgment matrix
$$A=	\begin{bmatrix}
		a_{11} &\cdots& a_{1n} \\
		\vdots&\ddots&\vdots\\
		a_{n1} &\cdots& a_{nn}
		\end{bmatrix}$$
Then, using the method of arithmetic average, we get the weight vector,
$$\omega_{i}=\frac{1}{n}\sum_{j=1}^{n}\frac{a_{ij}}{\sum_{k=1}^{n}a_{kj}}$$

matlab可以求出算术平均法、几何平均法、特征法所求出的对应值。
excel可以计算各方案的得分,:F4可以锁定单元格。

局限

  • 决策层不能过多(n<=15): n n n过大可能会导致判断矩阵和一致矩阵差异较大。
  • 决策层中含有已知数据时,使用TOPSIS法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值