Error:Decorators are not valid here. 使用Angular中的装饰器

Decorators are not valid here,项目中出现这个提示信息,说明装饰器未知错误、或者在不支持的元素上使用了装饰器。
如下图所示,我在@NgModule装饰器后面加了一个导出方法,加完之后控制台提示了如下错误:Error TS1206:Decorators are not valid here.。@NgModule装饰器应该直接放在类定义之前,而代码中装饰器放在了方法前面,所以装饰器在这里无效:
在这里插入图片描述
修改对应位置的代码,@NgModule装饰器放在SharedModule前面,把getEcharts方法放在装饰器的前面或者类定义的后面,就好了:
在这里插入图片描述

在Angular中,装饰器是用来增强类、方法、属性和参数的强大工具。它们允许你添加元数据,改变行为,并使代码更具可读性和可维护性,在使用装饰器时,要知道使用了哪个装饰器,装饰器用在了哪个元素上。

常见的装饰器有下面几种,它们分别对应着一种使用情景

  • @Component:定义一个组件
import { Component } from '@angular/core';

@Component({
  selector: 'app-my-component',
  templateUrl: './my-component.component.html',
  styleUrls: ['./my-component.component.css']
})
export class MyComponent {
  // ...
}
  • @Directive:定义一个自定义指令
import { Directive, ElementRef } from '@angular/core';

@Directive({
  selector: '[appHighlight]'
})
export class HighlightDirective {
  constructor(private el: ElementRef) {
    el.nativeElement.style.backgroundColor = 'yellow';
  }
}
  • @NgModule:定义一个Angular模块
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent } from './app.component';

@NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }
  • @Injectable:定义一个Angular服务
import { Injectable } from '@angular/core';

@Injectable({
  providedIn: 'root'
})
export class MyService {
  // ...
}
  • @Input:定义一个组件的输入属性
import { Component, Input } from '@angular/core';

@Component({
  // ...
})
export class MyComponent {
  @Input() name: string;
}
  • @Output:定义一个组件的输出属性
import { Component, Output, EventEmitter } from '@angular/core';

@Component({
  // ...
})
export class MyComponent {
  @Output() onButtonClicked = new EventEmitter<any>();

  onClick() {
    this.onButtonClicked.emit('Button clicked!');
  }
}
  • @HostListenter:鉴定宿主元素的事件
import { Directive, HostListener } from '@angular/core';

@Directive({
  selector: '[appClick]'
})
export class ClickDirective {
  @HostListener('click') onClick() {
    console.log('Click event!');
  }
}
  • @HostBinding:绑定宿主元素的属性
import { Directive, HostBinding } from '@angular/core';

@Directive({
  selector: '[appHighlight]'
})
export class HighlightDirective {
  @HostBinding('style.backgroundColor') backgroundColor = 'yellow';
}
  • @Pipe:定义一个Angular管道
import { Pipe, PipeTransform } from '@angular/core';

@Pipe({
  name: 'capitalize'
})
export class CapitalizePipe implements PipeTransform {
  transform(value: string): string {
    return value.charAt(0).toUpperCase() + value.slice(1);
  }
}
  • @ViewChild:获取模板中子组件的引用
import { Component, ViewChild } from '@angular/core';
import { MyComponent } from './my-component.component';

@Component({
  // ...
})
export class ParentComponent {
  @ViewChild(MyComponent) myComponent: MyComponent;

  // ...
}
  • @ContentChild:获取模板中内容投影的引用
import { Component, ContentChild } from '@angular/core';
import { MyComponent } from './my-component.component';

@Component({
  // ...
})
export class ParentComponent {
  @ContentChild(MyComponent) myComponent: MyComponent;

  // ...
}
  • @Inject:在依赖注入时指定要注入的依赖项
import { Injectable, Inject } from '@angular/core';
import { MY_TOKEN } from './my-token';

@Injectable({
  providedIn: 'root'
})
export class MyService {
  constructor(@Inject(MY_TOKEN) private myValue: string) {
    // ...
  }
}
  • @Optional:在依赖注入时指定依赖项是可选的
import { Injectable, Inject, Optional } from '@angular/core';
import { MY_TOKEN } from './my-token';

@Injectable({
  providedIn: 'root'
})
export class MyService {
  constructor(@Optional() @Inject(MY_TOKEN) private myValue: string) {
    // ...
  }
}
  • @SkipSelf:在依赖注入时跳过自身的提供者
import { Injectable, Inject, SkipSelf } from '@angular/core';
import { MY_TOKEN } from './my-token';

@Injectable({
  providedIn: 'root'
})
export class MyService {
  constructor(@SkipSelf() @Inject(MY_TOKEN) private myValue: string) {
    // ...
  }
}
  • @Self:在依赖注入时只查找自身提供者
import { Injectable, Inject, Self } from '@angular/core';
import { MY_TOKEN } from './my-token';

@Injectable({
  providedIn: 'root'
})
export class MyService {
  constructor(@Self() @Inject(MY_TOKEN) private myValue: string) {
    // ...
  }
}
  • @forwardRef:解决循环依赖问题
import { forwardRef, Injectable } from '@angular/core';

@Injectable({
  providedIn: 'root'
})
export class AService {
  constructor(private bService: BService) {
    // ...
  }
}

@Injectable({
  providedIn: 'root'
})
export class BService {
  constructor(private aService: AService) {
    // ...
  }
}
import { forwardRef, Injectable } from '@angular/core';

@Injectable({
  providedIn: 'root'
})
export class AService {
  constructor(private bService: BService) {
    // ...
  }
}

@Injectable({
  providedIn: 'root'
})
export class BService {
  constructor(@Inject(forwardRef(() => AService)) private aService: AService) {
    // ...
  }
}
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值